Fragile X syndrome is the most common cause of inherited mental retardation and the second most common cause of mental impairment after trisomy 21. It occurs because of a failure to express the fragile X mental retardation protein. The most common molecular basis for the disease is the abnormal expansion of the number of CGG repeats in the fragile X mental retardation 1 gene (FMR1).
View Article and Find Full Text PDFNitrite reductase (NirK) of Nitrosomonas europaea confers tolerance to nitrite (NO2-). The nirK gene is clustered with three genes of unknown physiological function: ncgABC. At present, this organization is unique to nitrifying bacteria.
View Article and Find Full Text PDFProduction of nitric oxide (NO) and nitrous oxide (N(2)O) by ammonia (NH(3))-oxidizing bacteria in natural and man-made habitats is thought to contribute to the undesirable emission of NO and N(2)O into the earth's atmosphere. The NH(3)-oxidizing bacterium Nitrosomonas europaea expresses nitrite reductase (NirK), an enzyme that has so far been studied predominantly in heterotrophic denitrifying bacteria where it is involved in the production of these nitrogenous gases. The finding of nirK homologues in other NH(3)-oxidizing bacteria suggests that NirK is widespread among this group; however, its role in these nitrifying bacteria remains unresolved.
View Article and Find Full Text PDFIn this paper, we report the identification of a norCBQD gene cluster that encodes a functional nitric oxide reductase (Nor) in Nitrosomonas europaea. Disruption of the norB gene resulted in a strongly diminished nitric oxide (NO) consumption by cells and membrane protein fractions, which was restored by the introduction of an intact norCBQD gene cluster in trans. NorB-deficient cells produced amounts of nitrous oxide (N2O) equal to that of wild-type cells.
View Article and Find Full Text PDF