Publications by authors named "Sylvia F Chen"

The neurodegenerative disorder spinocerebellar ataxia type 7 (SCA7) is caused by a polyglutamine (polyQ) expansion in the ataxin-7 protein, categorizing SCA7 as one member of a large class of heritable neurodegenerative proteinopathies. Cleavage of ataxin-7 by the protease caspase-7 has been demonstrated in vitro, and the accumulation of proteolytic cleavage products in SCA7 patients and mouse models has been identified as an early pathological change. However, it remains unknown whether a causal relationship exists between ataxin-7 proteolysis and in vivo SCA7 disease progression.

View Article and Find Full Text PDF

Lifespan extension through pharmacological intervention may provide valuable tools to understanding the mechanisms of aging and could uncover new therapeutic approaches for the treatment of age-related disease. Although the nematode Caenorhabditis elegans is well known as a particularly suitable model for genetic manipulations, it has been recently used in a number of pharmacological studies searching for compounds with anti-aging activity. These compound screens are regularly performed in amphipathic solvents like dimethyl sulfoxide (DMSO), the solvent of choice for high-throughput drug screening experiments performed throughout the world.

View Article and Find Full Text PDF

Polyglutamine (polyQ) expansion within the ataxin-7 protein, a member of the STAGA [SPT3-TAF(II)31-GCN5L acetylase] and TFTC (GCN5 and TRRAP) chromatin remodeling complexes, causes the neurodegenerative disease spinocerebellar ataxia type 7 (SCA7). Proteolytic processing of ataxin-7 by caspase-7 generates N-terminal toxic polyQ-containing fragments that accumulate with disease progression and play an important role in SCA7 pathogenesis. To elucidate the basis for the toxicity of these fragments, we evaluated which posttranslational modifications of the N-terminal fragment of ataxin-7 modulate turnover and toxicity.

View Article and Find Full Text PDF

Caspase-7 is an executioner caspase that plays a key role in apoptosis, cancer, and a number of neurodegenerative diseases. The mechanism of caspase-7 activation by granzyme B and caspase-3 has been well characterized. However, whether other proteases such as calpains activate or inactivate caspase-7 is not known.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 7 (SCA7) is a polyglutamine (polyQ) disorder characterized by specific degeneration of cerebellar, brainstem, and retinal neurons. Although they share little sequence homology, proteins implicated in polyQ disorders have common properties beyond their characteristic polyQ tract. These include the production of proteolytic fragments, nuclear accumulation, and processing by caspases.

View Article and Find Full Text PDF

The intrinsic pathway of apoptosis was investigated in cell-free extracts of neurones and astrocytes at various stages of maturation. Neuronal extracts were activated 65-fold after 3 days, 9-fold after 7 days, and were not activated after 10 days in culture. In contrast, astrocyte extracts were activated to a similar extent at all stages, up to 60 days in culture.

View Article and Find Full Text PDF

Programmed cell death (pcd) may take the form of apoptosis or of nonapoptotic pcd. Whereas cysteine aspartyl-specific proteases (caspases) mediate apoptosis, the mediators of nonapoptotic cell death programs are much less well characterized. Here we report that alternative, nonapoptotic pcd induced by the neurokinin-1 receptor (NK(1)R) activated by its ligand Substance P, is mediated by a MAPK phosphorylation cascade recruited by the scaffold protein arrestin 2.

View Article and Find Full Text PDF