Publications by authors named "Sylvia Evans"

The heart, which is the first organ to develop, is highly dependent on its form to function. However, how diverse cardiac cell types spatially coordinate to create the complex morphological structures that are crucial for heart function remains unclear. Here we integrated single-cell RNA-sequencing with high-resolution multiplexed error-robust fluorescence in situ hybridization to resolve the identity of the cardiac cell types that develop the human heart.

View Article and Find Full Text PDF

Background: Recently shown to regulate cardiac development, the secreted axon guidance molecule SLIT3 maintains its expression in the postnatal heart. Despite its known expression in the cardiovascular system after birth, SLIT3's relevance to cardiovascular function in the postnatal state remains unknown. As such, the objectives of this study were to determine the postnatal myocardial sources of SLIT3 and to evaluate its functional role in regulating the cardiac response to pressure overload stress.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), a highly malignant and heterogeneous brain tumor, contains various types of tumor and non-tumor cells. Whether GBM cells can trans-differentiate into non-neural cell types, including mural cells or endothelial cells (ECs), to support tumor growth and invasion remains controversial. Here we generated two genetic GBM models de novo in immunocompetent mouse brains, mimicking essential pathological and molecular features of human GBMs.

View Article and Find Full Text PDF

Background: Glucose homeostasis is dependent on functional pancreatic α and ß cells. The mechanisms underlying the generation and maturation of these endocrine cells remain unclear.

Results: We unravel the molecular mode of action of ISL1 in controlling α cell fate and the formation of functional ß cells in the pancreas.

View Article and Find Full Text PDF

The heart, a vital organ which is first to develop, has adapted its size, structure and function in order to accommodate the circulatory demands for a broad range of animals. Although heart development is controlled by a relatively conserved network of transcriptional/chromatin regulators, how the human heart has evolved species-specific features to maintain adequate cardiac output and function remains to be defined. Here, we show through comparative epigenomic analysis the identification of enhancers and promoters that have gained activity in humans during cardiogenesis.

View Article and Find Full Text PDF

Retinoid-related orphan receptor (RAR) gamma (RORγt)-expressing regulatory T cells (RORγt T) play pivotal roles in preventing T cell hyperactivation and maintaining tissue homeostasis, in part by secreting the anti-inflammation cytokine interleukin-10 (IL-10). Here, we report that hypoxia-induced factor 1α (HIF1α) is the master transcription factor for in RORγt T. This critical anti-inflammatory pathway is negatively regulated by an RNA binding protein DEAD box helicase 5 (DDX5).

View Article and Find Full Text PDF

FLNC, encoding filamin C, is one of the most mutated genes in dilated and hypertrophic cardiomyopathy. However, the precise role of filamin C in mammalian heart remains unclear. In this study, we demonstrated Flnc global (FlncgKO) and cardiomyocyte-specific knockout (FlnccKO) mice died in utero from severely ruptured ventricular myocardium, indicating filamin C is required to maintain the structural integrity of myocardium in the mammalian heart.

View Article and Find Full Text PDF

Mitochondrial dysfunction in heart triggers an integrated stress response (ISR) through phosphorylation of eIF2α and subsequent ATF4 activation. DAP3 Binding Cell Death Enhancer 1 (DELE1) is a mitochondrial protein recently found to be critical for mediating mitochondrial stress-triggered ISR (MSR)-induced eIF2α-ATF4 pathway activation. However, the specific role of DELE1 in heart at baseline or in response to mitochondrial stress remains largely unknown.

View Article and Find Full Text PDF

Mechanisms by which specific histone modifications regulate distinct gene networks remain little understood. We investigated how H3K79me2, a modification catalyzed by DOT1L and previously considered a general transcriptional activation mark, regulates gene expression during cardiogenesis. Embryonic cardiomyocyte ablation of Dot1l revealed that H3K79me2 does not act as a general transcriptional activator, but rather regulates highly specific transcriptional networks at two critical cardiogenic junctures: embryonic cardiogenesis, where it was particularly important for left ventricle-specific genes, and postnatal cardiomyocyte cell cycle withdrawal, with Dot1L mutants having more mononuclear cardiomyocytes and prolonged cardiomyocyte cell cycle activity.

View Article and Find Full Text PDF

Background: The sinoatrial node (SAN) functions as the pacemaker of the heart, initiating rhythmic heartbeats. Despite its importance, the SAN is one of the most poorly understood cardiac entities because of its small size and complex composition and function. The Hippo signaling pathway is a molecular signaling pathway fundamental to heart development and regeneration.

View Article and Find Full Text PDF

As the native regenerative potential of adult cardiac tissue is limited post-injury, stimulating endogenous repair mechanisms in the mammalian myocardium is a potential goal of regenerative medicine therapeutics. Injection of myocardial matrix hydrogels into the heart post-myocardial infarction (MI) has demonstrated increased cardiac muscle and promotion of pathways associated with cardiac development, suggesting potential promotion of cardiomyocyte turnover. In this study, the myocardial matrix hydrogel was shown to have native capability as an effective reactive oxygen species scavenger and protect against oxidative stress induced cell cycle inhibition in vitro.

View Article and Find Full Text PDF

Ets1 deletion in some mouse strains causes septal defects and has been implicated in human congenital heart defects in Jacobsen syndrome, in which one copy of the Ets1 gene is missing. Here, we demonstrate that loss of Ets1 in mice results in a decrease in neural crest (NC) cells migrating into the proximal outflow tract cushions during early heart development, with subsequent malalignment of the cushions relative to the muscular ventricular septum, resembling double outlet right ventricle (DORV) defects in humans. Consistent with this, we find that cultured cardiac NC cells from Ets1 mutant mice or derived from iPS cells from Jacobsen patients exhibit decreased migration speed and impaired cell-to-cell interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Lymph node stromal cells are essential for lymph node development and immune responses, but their origins and characteristics are not well understood.
  • Using lineage-tracing and single-cell transcriptome analyses, researchers found that most stromal and blood endothelial cells come from Hoxb6 progenitors, while lymphatic endothelial cells are derived from Pax3 progenitors.
  • The study identified various stromal cell subsets in embryonic lymph nodes, suggesting that the diversity of these cells begins early in their development.
View Article and Find Full Text PDF

Background: Left ventricular noncompaction cardiomyopathy (LVNC) was discovered half a century ago as a cardiomyopathy with excessive trabeculation and a thin ventricular wall. In the decades since, numerous studies have demonstrated that LVNC primarily has an effect on left ventricles (LVs) and is often associated with LV dilation and dysfunction. However, in part because of the lack of suitable mouse models that faithfully mirror the selective LV vulnerability in patients, mechanisms underlying the susceptibility of LVs to dilation and dysfunction in LVNC remain unknown.

View Article and Find Full Text PDF

Rationale: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored.

View Article and Find Full Text PDF

Dysregulation of cardiac transcription programs has been identified in patients and families with heart failure, as well as those with morphological and functional forms of congenital heart defects. Mediator is a multi-subunit complex that plays a central role in transcription initiation by integrating regulatory signals from gene-specific transcriptional activators to RNA polymerase II (Pol II). Recently, Mediator subunit 30 (MED30), a metazoan specific Mediator subunit, has been associated with Langer-Giedion syndrome (LGS) Type II and Cornelia de Lange syndrome-4 (CDLS4), characterized by several abnormalities including congenital heart defects.

View Article and Find Full Text PDF

Background: Cardiomyopathy is a major clinical feature in Barth syndrome (BTHS), an X-linked mitochondrial lipid disorder caused by mutations in (), encoding a mitochondrial acyltransferase required for cardiolipin remodeling. Despite recent description of a mouse model of BTHS cardiomyopathy, an in-depth analysis of specific lipid abnormalities and mitochondrial form and function in an in vivo BTHS cardiomyopathy model is lacking.

Methods: We performed in-depth assessment of cardiac function, cardiolipin species profiles, and mitochondrial structure and function in our newly generated cardiomyocyte-specific knockout mice and Cre-negative control mice (n≥3 per group).

View Article and Find Full Text PDF

Nexilin (NEXN) was recently identified as a component of the junctional membrane complex required for development and maintenance of cardiac T-tubules. Loss of Nexn in mice leads to a rapidly progressive dilated cardiomyopathy (DCM) and premature death. A 3 bp deletion (1948-1950del) leading to loss of the glycine in position 650 (G650del) is classified as a variant of uncertain significance in humans and may function as an intermediate risk allele.

View Article and Find Full Text PDF

In pulmonary hypertension and certain forms of congenital heart disease, ventricular pressure overload manifests at birth and is an obligate hemodynamic abnormality that stimulates myocardial fibrosis, which leads to ventricular dysfunction and poor clinical outcomes. Thus, an attractive strategy is to attenuate the myocardial fibrosis to help preserve ventricular function. Here, by analyzing RNA-sequencing databases and comparing the transcript and protein levels of fibrillar collagen in WT and global-knockout mice, we found that slit guidance ligand 3 (SLIT3) was present predominantly in fibrillar collagen-producing cells and that SLIT3 deficiency attenuated collagen production in the heart and other nonneuronal tissues.

View Article and Find Full Text PDF