Publications by authors named "Sylvia E C van Beersum"

Article Synopsis
  • The study focuses on understanding the regulation of the primary cilium, an important cellular organelle, specifically through post-translational modifications like ubiquitination.
  • Using multi-proteomics techniques in different mammalian cell lines, researchers identified key proteins linked to ciliary signaling, remodeling, and trafficking.
  • Notably, findings revealed that ESCRT-dependent clathrin-mediated endocytosis is crucial for ciliary function in one cell line, while structural components of caveolae influence ciliary length in another, highlighting distinct regulatory mechanisms.
View Article and Find Full Text PDF

Mutations in PDE6D impair the function of its cognate protein, phosphodiesterase 6D (PDE6D), in prenylated protein trafficking towards the ciliary membrane, causing the human ciliopathy Joubert Syndrome (JBTS22) and retinal degeneration in mice. In this study, we purified the prenylated cargo of PDE6D by affinity proteomics to gain insight into PDE6D-associated disease mechanisms. By this approach, we have identified a specific set of PDE6D-interacting proteins that are involved in photoreceptor integrity, GTPase activity, nuclear import, or ubiquitination.

View Article and Find Full Text PDF

The outer segments (OS) of rod and cone photoreceptor cells are specialized sensory cilia that contain hundreds of opsin-loaded stacked membrane disks that enable phototransduction. The biogenesis of these disks is initiated at the OS base, but the driving force has been debated. Here, we studied the function of the protein encoded by the photoreceptor-specific gene , which is mutated in inherited retinal dystrophy (RP54).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the cilium, a crucial part of mammalian cells, and explores how its dysfunction leads to ciliopathies, a group of genetic diseases.
  • Researchers utilized various data types and advanced statistical methods to identify 285 potential ciliary genes and confirmed ciliary functions for 24 of them through experiments in different model organisms like mice and zebrafish.
  • The findings have led to the creation of CiliaCarta, a comprehensive database of 956 ciliary genes, which can help prioritize genetic testing for patients with ciliopathy disorders.
View Article and Find Full Text PDF

The Rab GTPase family comprises ∼70 GTP-binding proteins, functioning in vesicle formation, transport and fusion. They are activated by a conformational change induced by GTP-binding, allowing interactions with downstream effectors. Here, we report five individuals with two recurrent de novo missense mutations in RAB11B; c.

View Article and Find Full Text PDF

Background: Recent findings suggesting that () is involved in non-syndromic retinal disease have been debated, as the functional significance of identified missense variants was uncertain. We assessed whether variants cause non-syndromic retinitis pigmentosa (RP).

Methods: Exome sequencing was performed in three probands with RP.

View Article and Find Full Text PDF

Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes.

View Article and Find Full Text PDF

Ciliopathies are a group of human disorders caused by dysfunction of primary cilia, ubiquitous microtubule-based organelles involved in transduction of extra-cellular signals to the cell. This function requires the concentration of receptors and channels in the ciliary membrane, which is achieved by complex trafficking mechanisms, in part controlled by the small GTPase RAB8, and by sorting at the transition zone located at the entrance of the ciliary compartment. Mutations in the transition zone gene CC2D2A cause the related Joubert and Meckel syndromes, two typical ciliopathies characterized by central nervous system malformations, and result in loss of ciliary localization of multiple proteins in various models.

View Article and Find Full Text PDF

Ciliopathies are Mendelian disorders caused by dysfunction of cilia, ubiquitous organelles involved in fluid propulsion (motile cilia) or signal transduction (primary cilia). Retinal dystrophy is a common phenotypic characteristic of ciliopathies since photoreceptor outer segments are specialized primary cilia. These ciliary structures heavily rely on intracellular minus-end directed transport of cargo, mediated at least in part by the cytoplasmic dynein 1 motor complex, for their formation, maintenance and function.

View Article and Find Full Text PDF

Cilia are small antenna-like cellular protrusions critical for many developmental signaling pathways. The ciliary protein Arl3 has been shown to act as a specific release factor for myristoylated and farnesylated ciliary cargo molecules by binding to the effectors Unc119 and PDE6δ. Here we describe a newly identified Arl3 binding partner, CCDC104/CFAP36.

View Article and Find Full Text PDF

The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor.

View Article and Find Full Text PDF

Cilia are microtubule-based cell appendages, serving motility, chemo-/mechano-/photo- sensation, and developmental signaling functions. Cilia are comprised of distinct structural and functional subregions including the basal body, transition zone (TZ) and inversin (Inv) compartments, and defects in this organelle are associated with an expanding spectrum of inherited disorders including Bardet-Biedl syndrome (BBS), Meckel-Gruber Syndrome (MKS), Joubert Syndrome (JS) and Nephronophthisis (NPHP). Despite major advances in understanding ciliary trafficking pathways such as intraflagellar transport (IFT), how proteins are transported to subciliary membranes remains poorly understood.

View Article and Find Full Text PDF

Leber congenital amaurosis (LCA) is the most severe form of retinal dystrophy with an onset in the first year of life. The most frequent genetic cause of LCA, accounting for up to 15% of all LCA cases in Europe and North-America, is a mutation (c.2991+1655AG) in intron 26 of CEP290.

View Article and Find Full Text PDF

Background: Sensenbrenner syndrome is a heterogeneous ciliopathy that is characterised by skeletal and ectodermal anomalies, accompanied by chronic renal failure, heart defects, liver fibrosis and other features.

Objective: To identify an additional causative gene in Sensenbrenner syndrome.

Methods: Single nucleotide polymorphism array analysis and standard sequencing techniques were applied to identify the causative gene.

View Article and Find Full Text PDF

Joubert syndrome and related disorders (JSRD) are primarily autosomal-recessive conditions characterized by hypotonia, ataxia, abnormal eye movements, and intellectual disability with a distinctive mid-hindbrain malformation. Variable features include retinal dystrophy, cystic kidney disease, and liver fibrosis. JSRD are included in the rapidly expanding group of disorders called ciliopathies, because all six gene products implicated in JSRD (NPHP1, AHI1, CEP290, RPGRIP1L, TMEM67, and ARL13B) function in the primary cilium/basal body organelle.

View Article and Find Full Text PDF

Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-Løken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis.

View Article and Find Full Text PDF

Leber congenital amaurosis (LCA) causes blindness or severe visual impairment at or within a few months of birth. Here we show, using homozygosity mapping, that the LCA5 gene on chromosome 6q14, which encodes the previously unknown ciliary protein lebercilin, is associated with this disease. We detected homozygous nonsense and frameshift mutations in LCA5 in five families affected with LCA.

View Article and Find Full Text PDF

RPGR-interacting protein 1 (RPGRIP1) is a key component of cone and rod photoreceptor cells, where it interacts with RPGR (retinitis pigmentosa GTPase regulator). Mutations in RPGRIP1 lead to autosomal recessive congenital blindness [Leber congenital amaurosis (LCA)]. Most LCA-associated missense mutations in RPGRIP1 are located in a segment that encodes two C2 domains.

View Article and Find Full Text PDF

Nail-patella syndrome is an autosomal dominant disorder characterized by dyplasia of finger nails, skeletal anomalies, and, frequently, renal disease. It has recently been shown that this disorder is caused by putative loss-of-function mutations in a transcription factor (LMX1B) belonging to the LIM-homeodomain family, members of which are known to be important for pattern formation during development. A cohort of eight Dutch NPS families were screened for mutations in the LMX1B gene; seven different mutations, including one novel variant, were identified.

View Article and Find Full Text PDF