Publications by authors named "Sylvia De Pater"

Article Synopsis
  • CRISPR technology helps scientists make precise changes in DNA, and understanding how cells repair broken DNA is important for this process.
  • Two important tools, Cas9 and Cas12a, are used for editing genes in plants, and they work a little differently when they create DNA breaks.
  • Both tools can cause mutations in similar ways, but they have different effects on how DNA is repaired, showing that either can be used effectively for engineering plants.
View Article and Find Full Text PDF

A practical and powerful approach for genome editing in plants is delivery of CRISPR reagents via transformation. The double-strand break (DSB)-inducing enzyme is expressed from a transferred segment of bacterial DNA, the T-DNA, which upon transformation integrates at random locations into the host genome or is captured at the self-inflicted DSB site. To develop efficient strategies for precise genome editing, it is thus important to define the mechanisms that repair CRISPR-induced DSBs, as well as those that govern random and targeted integration of T-DNA.

View Article and Find Full Text PDF

Agrobacterium tumefaciens, a pathogenic bacterium capable of transforming plants through horizontal gene transfer, is nowadays the preferred vector for plant genetic engineering. The vehicle for transfer is the T-strand, a single-stranded DNA molecule bound by the bacterial protein VirD2, which guides the T-DNA into the plant's nucleus where it integrates. How VirD2 is removed from T-DNA, and which mechanism acts to attach the liberated end to the plant genome is currently unknown.

View Article and Find Full Text PDF

Agrobacterium tumefaciens-mediated transformation has been for decades the preferred tool to generate transgenic plants. During this process, a T-DNA carrying transgenes is transferred from the bacterium to plant cells, where it randomly integrates into the genome via polymerase theta (Polθ)-mediated end joining (TMEJ). Targeting of the T-DNA to a specific genomic locus via homologous recombination (HR) is also possible, but such gene targeting (GT) events occur at low frequency and are almost invariably accompanied by random integration events.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a powerful tool for genome engineering in plants. The RNA-guided Cas9 endonuclease is usually delivered into plant cells as a DNA construct encoding Cas9 and the single guide RNA (sgRNA). However, constitutive expression of nucleases may cause off target mutations.

View Article and Find Full Text PDF

In recent years, several tools have become available for improved gene-targeting (GT) in plants. DNA breaks at specific sites activate local DNA repair and recombination, including recombination with ectopic sequences leading to GT. Large-scale transformation with the repair template can be avoided by pre-insertion of the repair template in the genome and liberation by sequence-specific nucleases (in planta GT procedure).

View Article and Find Full Text PDF

Double-strand breaks (DSBs) are one of the most harmful DNA lesions. Cells utilize two main pathways for DSB repair: homologous recombination (HR) and nonhomologous end-joining (NHEJ). NHEJ can be subdivided into the KU-dependent classical NHEJ (c-NHEJ) and the more error-prone KU-independent backup-NHEJ (b-NHEJ) pathways, involving the poly (ADP-ribose) polymerases (PARPs).

View Article and Find Full Text PDF

Agrobacterium tumefaciens is a pathogenic bacterium, which transforms plants by transferring a discrete segment of its DNA, the T-DNA, to plant cells. The T-DNA then integrates into the plant genome. T-DNA biotechnology is widely exploited in the genetic engineering of model plants and crops.

View Article and Find Full Text PDF

Gene Targeting (GT) is the integration of an introduced vector into a specific chromosomal site, via homologous recombination. It is considered an effective tool for precise genome editing, with far-reaching implications in biological research and biotechnology, and is widely used in mice, with the potential of becoming routine in many species. Nevertheless, the epigenetic status of the targeted allele remains largely unexplored.

View Article and Find Full Text PDF

Background: DAYSLEEPER is a domesticated transposase that is essential for development in Arabidopsis thaliana [Nature, 436:282-284, 2005]. It is derived from a hAT-superfamily transposon and contains many of the features found in the coding sequence of these elements [Nature, 436:282-284, 2005, Genetics, 158:949-957, 2001]. This work sheds light on the expression of this gene and localization of its product in protoplasts and in planta.

View Article and Find Full Text PDF

Besides the KU-dependent classical non-homologous end-joining (C-NHEJ) pathway, an alternative NHEJ pathway first identified in mammalian systems, which is often called the back-up NHEJ (B-NHEJ) pathway, was also found in plants. In mammalian systems PARP was found to be one of the essential components in B-NHEJ. Here we investigated whether PARP1 and PARP2 were also involved in B-NHEJ in Arabidopsis.

View Article and Find Full Text PDF

Previously, we showed that ZFN-mediated induction of double-strand breaks (DSBs) at the intended recombination site enhanced the frequency of gene targeting (GT) at an artificial target locus using Agrobacterium-mediated floral dip transformation. Here, we designed zinc finger nucleases (ZFNs) for induction of DSBs in the natural protoporphyrinogen oxidase (PPO) gene, which can be conveniently utilized for GT experiments. Wild-type Arabidopsis plants and plants expressing the ZFNs were transformed via floral dip transformation with a repair T-DNA with an incomplete PPO gene, missing the 5' coding region but containing two mutations rendering the enzyme insensitive to the herbicide butafenacil as well as an extra KpnI site for molecular analysis of GT events.

View Article and Find Full Text PDF

Background: DAYSLEEPER encodes a domesticated transposase from the hAT-superfamily, which is essential for development in Arabidopsis thaliana. Little is known about the presence of DAYSLEEPER orthologs in other species, or how and when it was domesticated. We studied the presence of DAYSLEEPER orthologs in plants and propose a model for the domestication of the ancestral DAYSLEEPER gene in angiosperms.

View Article and Find Full Text PDF

The widespread occurrence of sex is one of the most elusive problems in evolutionary biology. Theory predicts that asexual lineages can be driven to extinction by uncontrolled proliferation of vertically transmitted transposable elements (TEs), which accumulate because of the inefficiency of purifying selection in the absence of sex and recombination. To test this prediction, we compared genome-wide TE load between a sexual lineage of the parasitoid wasp Leptopilina clavipes and a lineage of the same species that is rendered asexual by Wolbachia-induced parthenogenesis.

View Article and Find Full Text PDF

From a pool of transgenic Arabidopsis (Arabidopsis thaliana) plants harboring an activator T-DNA construct, one mutant was identified that developed spontaneous necrotic spots (sns-D) on the rosette leaves under aseptic conditions. The sns-D mutation is dominant and homozygous plants are embryo lethal. The mutant produced smaller rosettes with a different number of stomata than the wild-type.

View Article and Find Full Text PDF

Zinc-finger nucleases (ZFNs) are artificial restriction enzymes, custom designed for induction of double-strand breaks (DSBs) at a specific locus. These DSBs may result in site-specific mutagenesis or homologous recombination at the repair site, depending on the DNA repair pathway that is used. These promising techniques for genome engineering were evaluated in Arabidopsis plants using Agrobacterium-mediated floral dip transformation.

View Article and Find Full Text PDF

Starch granule size is an important parameter for starch applications in industry. Starch granules are formed in amyloplasts, which are, like chloroplasts, derived from proplastids. Division processes and associated machinery are likely to be similar for all plastids.

View Article and Find Full Text PDF

The members of the 14-3-3 isoform family have been shown to be developmentally regulated during animal embryogenesis, where they take part in cell differentiation processes. 14-3-3 isoform-specific expression patterns were studied in plant embryogenic processes, using barley (Hordeum vulgare L.) microspore embryogenesis as a model system.

View Article and Find Full Text PDF

Reversibly glycosylated polypeptides (RGPs) have been implicated in polysaccharide biosynthesis. In plants, these proteins may function, for example, in cell wall synthesis and/or in synthesis of starch. We have isolated wheat (Triticum aestivum) and rice (Oryza sativa) Rgp cDNA clones to study the function of RGPs.

View Article and Find Full Text PDF