Publications by authors named "Sylvia Bahring"

Brachydactyly type E (BDE), shortened metacarpals, metatarsals, cone-shaped epiphyses, and short stature commonly occurs as a sole phenotype. Parathyroid hormone-like protein (PTHrP) has been shown to be responsible in all forms to date, either directly or indirectly. We used linkage and then whole genome sequencing in a small pedigree, to elucidate BDE and identified a truncated disintegrin-and-metalloproteinase-19 (ADAM19) allele in all affected family members, but not in nonaffected persons.

View Article and Find Full Text PDF
Article Synopsis
  • Phosphodiesterase 3A gain-of-function mutations lead to hypertension and stroke, but surprisingly do not cause cardiac hypertrophy or heart failure in affected patients, suggesting a potential protective mechanism in the heart.* -
  • Researchers used CRISPR-Cas9 models and human stem cells to analyze the effects of these mutations, observing that new mutations could enhance enzyme activity and self-assembly while preserving normal heart structure despite high blood pressure.* -
  • In their experiments, cardiac responses in mutant models showed adaptive changes in calcium cycling and similarities in heart function to normal (wild-type) rats, indicating the mutations might lead to beneficial heart adaptations under certain conditions.*
View Article and Find Full Text PDF

Congenital hearing loss is a common disorder worldwide. Heterogeneous gene variation accounts for approximately 20-25% of such patients. We investigated a five-generation Chinese family with autosomal-dominant nonsyndromic sensorineural hearing loss (SNHL).

View Article and Find Full Text PDF

Background: High blood pressure is the primary risk factor for cardiovascular death worldwide. Autosomal dominant hypertension with brachydactyly clinically resembles salt-resistant essential hypertension and causes death by stroke before 50 years of age. We recently implicated the gene encoding phosphodiesterase 3A (); however, in vivo modeling of the genetic defect and thus showing an involvement of mutant PDE3A is lacking.

View Article and Find Full Text PDF

Chromosomes occupy distinct interphase territories in the three-dimensional nucleus. However, how these chromosome territories are arranged relative to one another is poorly understood. Here, we investigated the chromosomal interactions between chromosomes 2q, 12, and 17 in human mesenchymal stem cells (MSCs) and MSC-derived cell types by DNA-FISH We compared our findings in normal karyotypes with a three-generation family harboring a 2q37-deletion syndrome, featuring a heterozygous partial deletion of histone deacetylase 4 () on chr2q37.

View Article and Find Full Text PDF

CD177 presents antigens in allo- and autoimmune diseases on the neutrophil surface. Individuals can be either CD177-deficient or harbor distinct CD177 and CD177 neutrophil subsets. We studied mechanisms controlling subset-restricted CD177 expression in bimodal individuals.

View Article and Find Full Text PDF

Mendelian conditions direct attention at basic mechanisms. In the 1990's DNA sequencing allowed elucidating such conditions. We embarked on an unexpected adventure to study a monogenic autosomal-dominant form of hypertension causing also a specific form of short fingers.

View Article and Find Full Text PDF

Autosomal-dominant hypertension with brachydactyly is a salt-independent Mendelian syndrome caused by activating mutations in the gene encoding phosphodiesterase 3A. These mutations increase the protein kinase A-mediated phosphorylation of phosphodiesterase 3A resulting in enhanced cAMP-hydrolytic affinity and accelerated cell proliferation. The phosphorylated vasodilator-stimulated phosphoprotein is diminished, and parathyroid hormone-related peptide is dysregulated, potentially accounting for all phenotypic features.

View Article and Find Full Text PDF

Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor. Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB).

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) interact with the nuclear architecture and are involved in fundamental biological mechanisms, such as imprinting, histone-code regulation, gene activation, gene repression, lineage determination, and cell proliferation, all by regulating gene expression. Understanding the lncRNA regulation of transcriptional or post-transcriptional gene regulation expands our knowledge of disease. Several associations between altered lncRNA function and gene expression have been linked to clinical disease phenotypes.

View Article and Find Full Text PDF

Translocations are chromosomal rearrangements that are frequently associated with a variety of disease states and developmental disorders. We identified 2 families with brachydactyly type E (BDE) resulting from different translocations affecting chromosome 12p. Both translocations caused downregulation of the parathyroid hormone-like hormone (PTHLH) gene by disrupting the cis-regulatory landscape.

View Article and Find Full Text PDF

Affected individuals with autosomal-dominant hypertension with brachydactyly syndrome develop severe progressive hypertension and, if left untreated, develop stroke by age <50 years. In 1996 we described hypertension and brachydactyly and presented data on adults. We recently revisited this family and performed further studies, focusing particularly on the children in this family.

View Article and Find Full Text PDF

Parathyroid hormone-like hormone (PTHLH) is an important chondrogenic regulator; however, the gene has not been directly linked to human disease. We studied a family with autosomal-dominant Brachydactyly Type E (BDE) and identified a t(8;12)(q13;p11.2) translocation with breakpoints (BPs) upstream of PTHLH on chromosome 12p11.

View Article and Find Full Text PDF

Objective: Dysferlin (DYSF) gene mutations cause limb girdle muscular dystrophy type 2B and Miyoshi's myopathy. The consequences of DYSF mutations on protein structure are poorly understood.

Methods: The gene encoding dysferlin was sequenced in patients with suspected dysferlin-deficient muscular dystrophy.

View Article and Find Full Text PDF

Autosomal-dominant hypertension and brachydactyly (Online Mendelian Inheritance in Man 112410) is a prototype-translational research project. We used interphase fluorescent in situ hybridization and discovered complex rearrangements on chromosome 12p in 5 families but elucidated a common inverted region in the linkage interval. The inversion contains no known gene.

View Article and Find Full Text PDF

Genomic imprinting is the epigenetic marking of gene subsets resulting in monoallelic or predominant expression of one of the two parental alleles according to their parental origin. We describe the systematic experimental verification of a prioritized 16 candidate imprinted gene set predicted by sequence-based bioinformatic analyses. We used Quantification of Allele-Specific Expression by Pyrosequencing (QUASEP) and discovered maternal-specific imprinted expression of the Kcnk9 gene as well as strain-dependent preferential expression of the Rarres1 gene in E11.

View Article and Find Full Text PDF

A cost-driving factor in Pyrosequencing is the need for single-stranded PCR products that are usually obtained by biotin-labeling of one primer. We designed new universal primers that allow the introduction of biotin during the specific PCR at either the forward or the reverse primer in a single reaction. When converting five human single nucleotide polymorphism assays from the standard format into the universal format, we obtained pyrograms of similar good quality.

View Article and Find Full Text PDF

We screened a white population for single nucleotide polymorphisms (SNPs) in five long QT syndrome genes, namely, KCNQ1 (LQT1), HERG (LQT2), SCN5A (LQT3), KCNE1 (LQT5), and KCNE2 (LQT6). We found 35 SNPs, 10 of which have not been previously described. Ten SNPs were in KCNE1, six in HERG, eight in KCNQ1, four in KCNE2, and seven in SCN5A.

View Article and Find Full Text PDF

We are studying a Turkish family with autosomal-dominant hypertension and brachydactyly; affected persons die of stroke before 50 years of age. With interphase fluorescence in situ hybridization, we found a chromosome 12p deletion, reinsertion, and inversion in affected persons. This finding suggested that the hypertension could be caused by one or more of 3 genes, the ATP-dependent potassium channel Kir6.

View Article and Find Full Text PDF

We developed a two-in-one, polymerase chain reaction (PCR)-based method with a specific amplification step and a universal amplification step in one tube to screen for the presence of DNA variations. The method relies on fluorescence-labeled artificial nonhuman sequences for mutation detection. To document utility, we applied this method as a high-throughput capillary single-strand conformation polymorphism screening system to identify 30 mutations in the low-density lipoprotein receptor gene.

View Article and Find Full Text PDF

Mendelian forms of hypertension have delivered a treasure trove of novel genes. To date, the molecular mechanisms of five such syndromes have been largely clarified, including glucocorticoid-remediable aldosteronism, Liddle's syndrome, apparent mineralocorticoid excess, an activating mutation of the mineralocorticoid receptor, and pseudohypoaldosteronism type 2. Each of these conditions features salt sensitivity with increased sodium and volume reabsorption by the kidney and low plasma renin activity.

View Article and Find Full Text PDF