The SARS-CoV-2 infection generates up to nine different sub-genomic mRNAs (sgRNAs), in addition to the genomic RNA (gRNA). The 5'UTR of each viral mRNA shares the first 75 nucleotides (nt.) at their 5'end, called the leader, but differentiates by a variable sequence (0 to 190 nt.
View Article and Find Full Text PDFCoronaviruses represent a large family of enveloped RNA viruses that infect a large spectrum of animals. In humans, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic and is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2002 and 2012, respectively. All viruses described to date entirely rely on the protein synthesis machinery of the host cells to produce proteins required for their replication and spread.
View Article and Find Full Text PDFTo replicate and disseminate, viruses need to manipulate and modify the cellular machinery for their own benefit. We are interested in translation, which is one of the key steps of gene expression and viruses that have developed several strategies to hijack the ribosomal complex. The type 1 human immunodeficiency virus is a good paradigm to understand the great diversity of translational control.
View Article and Find Full Text PDFIn the late phase of the HIV virus cycle, the unspliced genomic RNA is exported to the cytoplasm for the necessary translation of the Gag and Gag-pol polyproteins. Three distinct translation initiation mechanisms ensuring Gag production have been described with little rationale for their multiplicity. The Gag-IRES has the singularity to be located within Gag ORF and to directly interact with ribosomal 40S.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 (HIV-1) unspliced mRNA drives the expression of both Gag and Gag-Pol polyproteins by using both cap- and internal ribosome entry site (IRES)-dependent translation initiation mechanisms. An IRES has been described in the matrix coding region that is involved in the production of shorter isoforms of Gag. However, up to now, this has only been shown with sequences derived from the HIV-1 laboratory strains (NL4.
View Article and Find Full Text PDFUnlabelled: Nonsegmented negative-stranded RNA viruses, or members of the order Mononegavirales, share a conserved gene order and the use of elaborate transcription and replication machinery made up of at least four molecular partners. These partners have coevolved with the acquisition of the permanent encapsidation of the entire genome by the nucleoprotein (N) and the use of this N-RNA complex as a template for the viral polymerase composed of the phosphoprotein (P) and the large enzymatic protein (L). Not only is P required for polymerase function, but it also stabilizes the L protein through an unknown underlying molecular mechanism.
View Article and Find Full Text PDFThe human immunodeficiency virus (HIV) unspliced full length genomic RNA possesses features of an eukaryotic cellular mRNA as it is capped at its 5' end and polyadenylated at its 3' extremity. This genomic RNA is used both for the production of the viral structural and enzymatic proteins (Gag and Pol, respectively) and as genome for encapsidation in the newly formed viral particle. Although both of these processes are critical for viral replication, they should be controlled in a timely manner for a coherent progression into the viral cycle.
View Article and Find Full Text PDFHere, we have characterized a step in translation initiation of viral and cellular mRNAs that contain RNA secondary structures immediately at the vicinity of their m(7)GTP cap. This is mediated by the DEAD-box helicase DDX3 which can directly bind to the 5' of the target mRNA where it clamps the entry of eIF4F through an eIF4G and Poly A-binding protein cytoplasmic 1 (PABP) double interaction. This could induce limited local strand separation of the secondary structure to allow 43S pre-initiation complex attachment to the 5' free extremity of the mRNA.
View Article and Find Full Text PDFExpression of the two isoforms p55 and p40 of HIV-1 Gag proteins relies on distinct translation initiation mechanisms, a cap-dependent initiation and two internal ribosome entry sites (IRESs). The regulation of these processes is complex and remains poorly understood. This study was focused on the influence of the 5'-UTR and on the requirement for the eukaryotic initiation factor (eIF)4F complex components.
View Article and Find Full Text PDFViral internal ribosomal entry sites (IRESs) mediate end-independent translation initiation. There are 4 major structurally-distinct IRES groups: type 1 (e.g.
View Article and Find Full Text PDFThe enteroviruses poliovirus (PV), Coxsackie B virus (CVB) and rhinovirus (HRV) are members of Picornaviridae that inhibit host cell translation early in infection. Enterovirus translation soon predominates in infected cells, but eventually also shuts off. This complex pattern of modulation of translation suggests regulation by a multifactorial mechanism.
View Article and Find Full Text PDFSpecific interactions of the classical swine fever virus internal ribosomal entry site (IRES) with 40S ribosomal subunits and eukaryotic translation initiation factor (eIF)3 enable 43S preinitiation complexes containing eIF3 and eIF2-GTP-Met-tRNA(iMet) to bind directly to the initiation codon, yielding 48S initiation complexes. We report that eIF5B or eIF5B/eIF3 also promote Met-tRNA(iMet) binding to IRES-40S complexes, forming 48S complexes that can assemble elongation-competent ribosomes. Although 48S complexes assembled both by eIF2/eIF3- and eIF5B/eIF3-mediated Met-tRNA(iMet) recruitment were destabilized by eIF1, dissociation of 48S complexes formed with eIF2 could be out-competed by efficient subunit joining.
View Article and Find Full Text PDFThe Simian picornavirus type 9 (SPV9) 5'-untranslated region (5' UTR) has been predicted to contain an internal ribosomal entry site (IRES) with structural elements that resemble domains of hepacivirus/pestivirus (HP) IRESs. In vitro reconstitution of initiation confirmed that this 5' UTR contains an IRES and revealed that it has both functional similarities and differences compared to HP IRESs. Like HP IRESs, the SPV9 IRES bound directly to 40S subunits and eukaryotic initiation factor (eIF) 3, depended on the conserved domain IIId for ribosomal binding and consequently for function, and additionally required eIF2/initiator tRNA to yield 48S complexes that formed elongation-competent 80S ribosomes in the presence of eIF5, eIF5B, and 60S subunits.
View Article and Find Full Text PDFThe internal ribosomal entry sites (IRESs) of encephalomyocarditis virus (EMCV) and related viruses promote initiation of translation by a noncanonical end-independent mechanism. To characterize this mechanism at the molecular level, we have developed biochemical approaches to reconstitute the process in vitro from individual purified components of the translation apparatus, developed methods to characterize steps in this process so that the functions of individual proteins can be characterized, and adapted assays such as primer extension inhibition ("toe printing") to monitor accurate assembly on the IRES of ribosomal 48S and 80S complexes. In vitro reconstitution of 48S complex formation offers an approach for the functional identification of IRES trans-acting factors (ITAFs) that are required for initiation in addition to canonical initiation factors and revealed that despite being related, different EMCV-like IRESs nevertheless have distinct ITAF requirements.
View Article and Find Full Text PDFThe 5' untranslated regions (UTRs) of the RNA genomes of Flaviviridae of the Hepacivirus and Pestivirus genera contain internal ribosomal entry sites (IRESs) that are unrelated to the two principal classes of IRESs of Picornaviridae. The mechanism of translation initiation on hepacivirus/pestivirus (HP) IRESs, which involves factor-independent binding to ribosomal 40S subunits, also differs fundamentally from initiation on these picornavirus IRESs. Ribosomal binding to HP IRESs requires conserved sequences that form a pseudoknot and the adjacent IIId and IIIe domains; analogous elements do not occur in the two principal groups of picornavirus IRESs.
View Article and Find Full Text PDFThe Sendai virus "C-proteins" (C', C, Y1 and Y2) are a nested set of non-structural proteins. The shorter Y proteins arise in vivo both by de novo translation initiation and by proteolytic processing of C'. In this paper, we demonstrate that C' but not C (differing only by 11 N-terminal amino acid) serves as an efficient substrate for intracellular processing.
View Article and Find Full Text PDFThe genomic RNA of the gypsy retroelement from Drosophila melanogaster exhibits features similar to other retroviral RNAs because its 5' untranslated (5' UTR) region is unusually long (846 nucleotides) and potentially highly structured. Our initial aim was to search for an internal ribosome entry site (IRES) element in the 5' UTR of the gypsy genomic RNA by using various monocistronic and bicistronic RNAs in the rabbit reticulocyte lysate (RRL) system and in cultured cells. Results reported here show that two functionally distinct and independent RNA domains control the production of gypsy encoded proteins.
View Article and Find Full Text PDFThe four Sendai virus C-proteins (C', C, Y1, and Y2) represent an N-terminal nested set of non-structural proteins whose expression modulates both the readout of the viral genome and the host cell response. In particular, they modulate the innate immune response by perturbing the signaling of type 1 interferons. The initiation codons for the four C-proteins have been mapped in vitro, and it has been proposed that the Y proteins are initiated by ribosomal shunting.
View Article and Find Full Text PDFShunting is a mechanism that permits translational initiation at internal codons positioned in proximity to a ribosome acceptor sequence. Sendai virus exploits shunting to express a series of proteins that initiate at the fourth and fifth start sites on the P/C mRNA (namely, the Y1 and Y2 proteins, respectively). Shunt-mediated initiation at these sites is codon independent.
View Article and Find Full Text PDF