Publications by authors named "Sylvain Yon"

Background: Varicose veins are a common disease that may significantly affect quality of life. Different approaches are currently used in clinical practice to treat this pathology.

Materials And Methods: In thermal therapy (radiofrequency or laser therapy), the vein is directly heated to a high temperature to induce vein wall coagulation, and the heat induces denaturation of the intramural collagen, which results macroscopically in vein shrinkage.

View Article and Find Full Text PDF

Varicose veins are a common pathology that can be treated by endovenous thermal procedures like radiofrequency ablation (RFA). Such catheter-based techniques consist in raising the temperature of the vein wall to 70 to 120 °C to induce vein wall coagulation. Although effective, this treatment option is not suited for all types of veins and can be technically challenging.

View Article and Find Full Text PDF

High-intensity focused ultrasound (HIFU) enables the non-invasive thermal ablation of tumors. However, numerical simulations of the treatment remain complex and difficult to validate in clinically relevant situations. In this context, needle hydrophone measurements of the acoustic field downstream of seven rabbit tissue layers comprising skin, subcutaneous fat and muscle were performed in different geometrical configurations.

View Article and Find Full Text PDF

Background: The lesions induced by high-intensity focused ultrasound (HIFU) thermal ablations are particularly difficult to simulate due to the complexity of the involved phenomena. In particular, boiling has a strong influence on the lesion shape. Thus, it must be accounted for if it happens during the pulses to be modeled.

View Article and Find Full Text PDF

Ultrasound biomicroscopy (UBM) of mice can provide a testing ground for new imaging strategies. The UBM system presented in this paper facilitates the development of imaging and measurement methods with programmable design, arbitrary waveform coding, broad bandwidth (2-80 MHz), digital filtering, programmable processing, RF data acquisition, multithread/multicore real-time display, and rapid mechanical scanning ( View Article and Find Full Text PDF

The potential of time reversal processing for room acoustics has been extensively investigated in the companion of this paper [J. Acoust. Soc.

View Article and Find Full Text PDF

Chronic hepatitis is accompanied by progressive deposit of hepatic fibrosis, which may lead to cirrhosis. Evaluation of liver fibrosis is, thus, of great clinical interest and, up to now, has been assessed with liver biopsy. This work aims to evaluate a new noninvasive device to quantify liver fibrosis: the shear elasticity probe or fibroscan.

View Article and Find Full Text PDF

New perspectives in audible range acoustics, such as virtual sound space creation and active noise control, rely on the ability of the rendering system to recreate precisely a desired sound field. This ability to control sound in a given volume of a room is directly linked to the capacity to focus acoustical energy both in space and time. However, sound focusing in rooms remains a complicated problem, essentially because of the multiple reflections on obstacles and walls occurring during propagation.

View Article and Find Full Text PDF

We present an experimental demonstration showing that, contrary to first intuition, the more scattering a mesoscopic medium is, the more information can be conveyed through it. We used a multiple input-multiple output configuration: a multichannel ultrasonic time-reversal antenna is used to transmit random series of bits simultaneously to different receivers which were only a few wavelengths apart. Whereas the transmission is free of error when multiple scattering occurs in the propagation medium, the error rate is huge in a homogeneous medium.

View Article and Find Full Text PDF