The effect of nitrogen (N) nutrition on grapevine carbon (C) dynamics has been well studied at the annual scale, but poorly addressed at a pluriannual timescale. The aim of this study was to quantify, in an integrated conceptual framework, the effect of N nutrition on potted grapevine growth and storage over 2 consecutive years. The consequences of using destructive measurements were investigated using a hierarchical Bayesian model.
View Article and Find Full Text PDFAlthough fine roots are important components of the global carbon cycle, there is limited understanding of root structure-function relationships among species. We determined whether root respiration rate and decomposability, two key processes driving carbon cycling but always studied separately, varied with root morphological and chemical traits, in a coordinated way that would demonstrate the existence of a root economics spectrum (RES). Twelve traits were measured on fine roots (diameter ≤ 2 mm) of 74 species (31 graminoids and 43 herbaceous and dwarf shrub eudicots) collected in three biomes.
View Article and Find Full Text PDF