A number of renormalization schemes for improving the convergence of multiple scattering series expansions are investigated. Numerical tests on a small Cu(111) cluster demonstrate their effectiveness, for example increasing the rate of convergence by up to a factor 2 or by transforming a divergent series into a convergent one. These techniques can greatly facilitate multiple scattering calculations, especially for spectroscopies such as photoelectron diffraction, Auger electron diffraction, low energy electron diffraction , where an electron propagates with a kinetic energy of hundreds of eV in a cluster of hundreds of atoms.
View Article and Find Full Text PDFHybrid materials taking advantage of the different physical properties of materials are highly attractive for numerous applications in today's science and technology. Here, it is demonstrated that epitaxial bi-domain III-V/Si are hybrid structures, composed of bulk photo-active semiconductors with 2D topological semi-metallic vertical inclusions, endowed with ambipolar properties. By combining structural, transport, and photoelectrochemical characterizations with first-principle calculations, it is shown that the bi-domain III-V/Si materials are able within the same layer to absorb light efficiently, separate laterally the photo-generated carriers, transfer them to semimetal singularities, and ease extraction of both electrons and holes vertically, leading to efficient carrier collection.
View Article and Find Full Text PDFThe interface resistance at metal/semiconductor junctions has been a key issue for decades. The control of this resistance is dependent on the possibility to tune the Schottky barrier height. However, Fermi level pinning in these systems forbids a total control over interface resistance.
View Article and Find Full Text PDFChalcogenide semiconducting systems are of growing interest for mid-temperature range (~500 K) thermoelectric applications. In this work, GeTeSe₃ glasses were intentionally crystallized by doping with Cu and Bi. These effectively-crystallized materials of composition (GeTeSe₃)M (M = Cu or Bi; = 5, 10, 15), obtained by vacuum-melting and quenching techniques, were found to have multiple crystalline phases and exhibit increased electrical conductivity due to excess hole concentration.
View Article and Find Full Text PDFNanoscale Res Lett
November 2012
(In,Ga)As/GaP(001) quantum dots (QDs) are grown by molecular beam epitaxy and studied both theoretically and experimentally. The electronic band structure is simulated using a combination of k·p and tight-binding models. These calculations predict an indirect to direct crossover with the In content and the size of the QDs.
View Article and Find Full Text PDF