Publications by authors named "Sylvain Thierry"

Toll-like receptor 3 (TLR3) agonists such as polyinosinic:polycytidylic acid (poly(I:C)) have immunostimulatory effects that can be taken advantage of to induce anticancer immune responses in preclinical models. In addition, poly(I:C) has been introduced into clinical trials to demonstrate its efficacy as an adjuvant and to enhance the immunogenicity of locally injected tumors, thus reverting resistance to PD-L1 blockade in melanoma patients. Here, we report the pharmacokinetic, pharmacodynamic, mechanistic and toxicological profile of a novel TLR3 agonist, TL-532, a chemically synthesized double-stranded RNA that is composed by blocks of poly(I:C) and poly(A:U) (polyadenylic - polyuridylic acid).

View Article and Find Full Text PDF

Toll-like receptor 3 (TLR3) is an innate immune receptor that recognizes double-stranded RNA (dsRNA) and induces inflammation in immune and normal cells to initiate anti-microbial responses. TLR3 acts also as a death receptor only in cancer cells but not in their normal counterparts, making it an attractive target for cancer therapies. To date, all of the TLR3-activating dsRNAs used at preclinical or clinical stages have major drawbacks such as structural heterogeneity, toxicity, and lack of specificity and/or efficacy.

View Article and Find Full Text PDF

Carboplatin is used to treat many cancers, but occurrence of drug resistance and its high toxicity remain a clinical hurdle limiting its efficacy. We compared the efficacy and toxicity of DNA repair inhibitors olaparib or AsiDNA administered alone or in combination with carboplatin. Olaparib acts by inhibiting PARP-dependent repair pathways whereas AsiDNA inhibits double-strand break repair by preventing recruitment of enzymes involved in homologous recombination and non-homologous end joining.

View Article and Find Full Text PDF

The Achilles heel of anticancer treatments is intrinsic or acquired resistance. Among many targeted therapies, the DNA repair inhibitors show limited efficacy due to rapid emergence of resistance. We examined evolution of cancer cells and tumors treated with AsiDNA, a new DNA repair inhibitor targeting all DNA break repair pathways.

View Article and Find Full Text PDF

Integration of the HIV-1 DNA into the host genome is essential for viral replication and is catalyzed by the retroviral integrase. To date, the only substrate described to be involved in this critical reaction is the linear viral DNA produced in reverse transcription. However, during HIV-1 infection, two-long terminal repeat DNA circles (2-LTRcs) are also generated through the ligation of the viral DNA ends by the host cell's nonhomologous DNA end-joining pathway.

View Article and Find Full Text PDF

Hematologic malignancies are rare cancers that develop refractory disease upon patient relapse, resulting in decreased life expectancy and quality of life. DNA repair inhibitors are a promising strategy to treat cancer but are limited by their hematologic toxicity in combination with conventional chemotherapies. Dbait are large molecules targeting the signaling of DNA damage and inhibiting all the double-strand DNA break pathways.

View Article and Find Full Text PDF

Therapeutic strategies targeting DNA repair pathway defects have been widely explored, but often only benefit small numbers of patients. Here we characterized potential predictive biomarkers for treatment with AsiDNA, a novel first-in-class DNA repair inhibitor. We evaluated genetic instability and DNA repair defects by direct and indirect assays in 12 breast cancer cell lines to estimate the spontaneous occurrence of single-strand and double-strand breaks (DSB).

View Article and Find Full Text PDF

Cancer treatments using tumor defects in DNA repair pathways have shown promising results but are restricted to small subpopulations of patients. The most advanced drugs in this field are PARP inhibitors (PARPi), which trigger synthetic lethality in tumors with homologous recombination (HR) deficiency. Using AsiDNA, an inhibitor of HR and nonhomologous end joining, together with PARPi should allow bypassing the genetic restriction for PARPi efficacy.

View Article and Find Full Text PDF

Integration of HIV-1 linear DNA into host chromatin is required for high levels of viral expression, and constitutes a key therapeutic target. Unintegrated viral DNA (uDNA) can support only limited transcription but may contribute to viral propagation, persistence and/or treatment escape under specific situations. The molecular mechanisms involved in the differential expression of HIV uDNA vs integrated genome (iDNA) remain to be elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • hRAD51 protein plays a crucial role in restricting HIV-1 integration, both in lab experiments (in vitro) and in living organisms (in vivo).
  • Activating hRAD51 enhances its ability to inhibit HIV-1 integration, while inhibiting it leads to increased viral integration.
  • Cells with higher levels of hRAD51 before infection are more resistant to HIV-1, but activating hRAD51 during integration makes them more permissive, showing its complex role in HIV-1 replication.
View Article and Find Full Text PDF

Background: Genomic integration, an obligate step in the HIV-1 replication cycle, is blocked by the integrase inhibitor raltegravir. A consequence is an excess of unintegrated viral DNA genomes, which undergo intramolecular ligation and accumulate as 2-LTR circles. These circularized genomes are also reliably observed in vivo in the absence of antiviral therapy and they persist in non-dividing cells.

View Article and Find Full Text PDF

HIV-1 derived vectors are among the most efficient for gene transduction in mammalian tissues. As the parent virus, they carry out vector genome insertion into the host cell chromatin. Consequently, their preferential integration in transcribed genes raises several conceptual and safety issues.

View Article and Find Full Text PDF

HIV-1 reverse transcriptase (RT)-associated RNase H activity is an essential function in viral genome retrotranscription. RNase H is a promising drug target for which no inhibitor is available for therapy. Diketo acid (DKA) derivatives are active site Mg(2+)-binding inhibitors of both HIV-1 RNase H and integrase (IN) activities.

View Article and Find Full Text PDF

Background: HIV-1 DNA is found both integrated in the host chromosome and unintegrated in various forms: linear (DNAL) or circular (1-LTRc, 2-LTRc or products of auto-integration). Here, based on pre-established strategies, we extended and characterized in terms of sensitivity two methodologies for quantifying 1-LTRc and DNAL, respectively, the latter being able to discriminate between unprocessed or 3'-processed DNA.

Results: Quantifying different types of viral DNA genome individually provides new information about the dynamics of all viral DNA forms and their interplay.

View Article and Find Full Text PDF

Ku, a cellular complex required for human cell survival and involved in double strand break DNA repair and multiple other cellular processes, may modulate retroviral multiplication, although the precise mechanism through which it acts is still controversial. Recently, Ku was identified as a possible anti-human immunodeficiency virus type 1 (HIV-1) target in human cells, in two global approaches. Here we investigated the role of Ku on the HIV-1 replication cycle by analyzing the expression level of a panel of non-replicative lentiviral vectors expressing the green fluorescent protein in human colorectal carcinoma HCT 116 cells, stably or transiently depleted of Ku.

View Article and Find Full Text PDF

Extracellular adenosine triphosphate (ATP) can activate purinergic receptors of the plasma membrane and modulate multiple cellular functions. We report that ATP is released from HIV-1 target cells through pannexin-1 channels upon interaction between the HIV-1 envelope protein and specific target cell receptors. Extracellular ATP then acts on purinergic receptors, including P2Y2, to activate proline-rich tyrosine kinase 2 (Pyk2) kinase and transient plasma membrane depolarization, which in turn stimulate fusion between Env-expressing membranes and membranes containing CD4 plus appropriate chemokine co-receptors.

View Article and Find Full Text PDF

Integrase (IN), the HIV-1 enzyme responsible for the integration of the viral genome into the chromosomes of infected cells, is the target of the recently approved antiviral raltegravir (RAL). Despite this drug's activity against viruses resistant to other antiretrovirals, failures of raltegravir therapy were observed, in association with the emergence of resistance due to mutations in the integrase coding region. Two pathways involving primary mutations on residues N155 and Q148 have been characterized.

View Article and Find Full Text PDF

Since integration into the host cell genome is an obligatory step for their replication, retro-elements are both potent insertional mutagens and also suitable vectors for gene therapy. Many recent studies reported that the integration process is not random but, on the contrary, higly regulated at the molecular level. Many viral proteins and cellular factors play a key role in the integration step, explaining the reason why different retro-elements display distinct integration profiles.

View Article and Find Full Text PDF

Background: Necrosis is a frequent condition during AIDS, notably in organs targetted by opportunistic infections. Soluble factors released by necrotic cells are important for signalling cell damage, but little is known concerning their effect on HIV-1 replication. We focused on HMGB1, an abundant component of the chromatin that is released from necrotic cells and can act as a pro-inflammatory mediator.

View Article and Find Full Text PDF

Lipid mediators such as prostaglandin E2 (PGE2) play a central role during atherogenesis as a consequence of inflammation. PGE2 is produced from phospholipids by a cascade of enzymatic reactions involving phospholipase A2 (PLA2), cyclooxygenase (COX), and prostaglandin E synthase (PGES). It is released by several cell types, including vascular smooth muscle cells (VSMCs).

View Article and Find Full Text PDF

In human immunodeficiency virus type 1 (HIV-1)-infected cells, a cell cycle arrest in G(2) increases viral expression and may represent a strategy for the virus to optimize its expression. In latently infected cells, balance between viral silencing and reactivation relies on the nucleosomal organization of the integrated long terminal repeat (LTR). It is shown here that nucleosome nuc-1, which is located downstream of the TATA box, is specifically modified when latently infected cells are arrested in G(2) by chemical inducers.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvc5q7k12j89ke26vjgneohuscjd04nd2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once