Publications by authors named "Sylvain Soliman"

Introduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing.

Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms.

View Article and Find Full Text PDF

Molecular interaction maps (MIMs) are static graphical representations depicting complex biochemical networks that can be formalized using one of the Systems Biology Graphical Notation languages. Regardless of their extensive coverage of various biological processes, they are limited in terms of dynamic insights. However, MIMs can serve as templates for developing dynamic computational models.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are amongst the key players of the tumor microenvironment (TME) and are involved in cancer initiation, progression, and resistance to therapy. They exhibit aggressive phenotypes affecting extracellular matrix remodeling, angiogenesis, immune system modulation, tumor growth, and proliferation. CAFs phenotypic changes appear to be associated with metabolic alterations, notably a reverse Warburg effect that may drive fibroblasts transformation.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a complex autoimmune disease with an unknown aetiology. However, rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) play a significant role in initiating and perpetuating destructive joint inflammation by expressing immuno-modulating cytokines, adhesion molecules, and matrix remodelling enzymes. In addition, RA-FLS are primary drivers of inflammation, displaying high proliferative rates and an apoptosis-resistant phenotype.

View Article and Find Full Text PDF

Rheumatoid Arthritis (RA) is an autoimmune disease characterized by a highly invasive pannus formation consisting mainly of Synovial Fibroblasts (RASFs). This pannus leads to cartilage, bone, and soft tissue destruction in the affected joint. RASFs' activation is associated with metabolic alterations resulting from dysregulation of extracellular signals' transduction and gene regulation.

View Article and Find Full Text PDF
Article Synopsis
  • Computational models in systems biology are used to understand the dynamic behaviors of complex biological systems.
  • As the number of these models increases, enhancing their reusability and ability to reproduce experiments becomes essential, requiring proper model annotation.
  • Recent initiatives aim to establish a standardized framework for making computational models in biology more accessible, reproducible, and interoperable, while also addressing existing challenges in the field.
View Article and Find Full Text PDF

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources.

View Article and Find Full Text PDF

Motivation: Personalized medicine aims at providing patient-tailored therapeutics based on multi-type data toward improved treatment outcomes. Chronotherapy that consists in adapting drug administration to the patient's circadian rhythms may be improved by such approach. Recent clinical studies demonstrated large variability in patients' circadian coordination and optimal drug timing.

View Article and Find Full Text PDF

Motivation: Molecular interaction maps have emerged as a meaningful way of representing biological mechanisms in a comprehensive and systematic manner. However, their static nature provides limited insights to the emerging behaviour of the described biological system under different conditions. Computational modelling provides the means to study dynamic properties through in silico simulations and perturbations.

View Article and Find Full Text PDF

The fast accumulation of biological data calls for their integration, analysis and exploitation through more systematic approaches. The generation of novel, relevant hypotheses from this enormous quantity of data remains challenging. Logical models have long been used to answer a variety of questions regarding the dynamical behaviours of regulatory networks.

View Article and Find Full Text PDF

Thomas' necessary conditions for the existence of multiple steady states in gene networks have been proved by Soulé with high generality for dynamical systems defined by differential equations. When applied to (protein) reaction networks however, those conditions do not provide information since they are trivially satisfied as soon as there is a bimolecular or a reversible reaction. Refined graphical requirements have been proposed to deal with such cases.

View Article and Find Full Text PDF

Biochemical reaction networks are one of the most widely used formalisms in systems biology to describe the molecular mechanisms of high-level cell processes. However, modellers also reason with influence diagrams to represent the positive and negative influences between molecular species and may find an influence network useful in the process of building a reaction network. In this paper, we introduce a formalism of influence networks with forces, and equip it with a hierarchy of Boolean, Petri net, stochastic and differential semantics, similarly to reaction networks with rates.

View Article and Find Full Text PDF

Experimental observations have put in evidence autonomous self-sustained circadian oscillators in most mammalian cells, and proved the existence of molecular links between the circadian clock and the cell cycle. Some mathematical models have also been built to assess conditions of control of the cell cycle by the circadian clock. However, recent studies in individual NIH3T3 fibroblasts have shown an unexpected acceleration of the circadian clock together with the cell cycle when the culture medium is enriched with growth factors, and the absence of such acceleration in confluent cells.

View Article and Find Full Text PDF

Model reduction is a central topic in systems biology and dynamical systems theory, for reducing the complexity of detailed models, finding important parameters, and developing multi-scale models for instance. While singular perturbation theory is a standard mathematical tool to analyze the different time scales of a dynamical system and decompose the system accordingly, tropical methods provide a simple algebraic framework to perform these analyses systematically in polynomial systems. The crux of these methods is in the computation of tropical equilibrations.

View Article and Find Full Text PDF

Biochemical reaction networks grow bigger and bigger, fed by the high-throughput data provided by biologists and bred in open repositories of models allowing merging and evolution. Nevertheless, since the available data is still very far from permitting the identification of the increasing number of kinetic parameters of such models, the necessity of structural analyses for describing the dynamics of chemical networks appears stronger every day. Using the structural information, notably from the stoichiometric matrix, of a biochemical reaction system, we state a more strict version of the famous Thomas' necessary condition for multistationarity.

View Article and Find Full Text PDF

Background: We present a way to compute the minimal semi-positive invariants of a Petri net representing a biological reaction system, as resolution of a Constraint Satisfaction Problem. The use of Petri nets to manipulate Systems Biology models and make available a variety of tools is quite old, and recently analyses based on invariant computation for biological models have become more and more frequent, for instance in the context of module decomposition.

Results: In our case, this analysis brings both qualitative and quantitative information on the models, in the form of conservation laws, consistency checking, etc.

View Article and Find Full Text PDF

Many models in Systems Biology are described as a system of Ordinary Differential Equations, which allows for transient, steady-state or bifurcation analysis when kinetic information is available. Complementary structure-related qualitative analysis techniques have become increasingly popular in recent years, like qualitative model checking or pathway analysis (elementary modes, invariants, flux balance analysis, graph-based analyses, chemical organization theory, etc.).

View Article and Find Full Text PDF

Motivation: In Systems Biology, an increasing collection of models of various biological processes is currently developed and made available in publicly accessible repositories, such as biomodels.net for instance, through common exchange formats such as SBML. To date, however, there is no general method to relate different models to each other by abstraction or reduction relationships, and this task is left to the modeler for re-using and coupling models.

View Article and Find Full Text PDF

The two element mutual activation and inhibitory positive feedback loops are a common motifs that occur in many biological systems in both isolated and interlocked form, as for example, in the cell division cycle and thymus differentiation in eukaryotes. The properties of three element interlocked positive feedback loops that embeds both mutual activation and inhibition are studied in depth for their bistable properties by performing bifurcation and stochastic simulations. Codimension one and two bifurcations reveal important properties like robustness to parameter variations and adaptability under various conditions by its ability to fine tune the threshold to a wide range of values and to maintain a wide bistable regime.

View Article and Find Full Text PDF

Motivation: Robustness is the capacity of a system to maintain a function in the face of perturbations. It is essential for the correct functioning of natural and engineered biological systems. Robustness is generally defined in an ad hoc, problem-dependent manner, thus hampering the fruitful development of a theory of biological robustness, recently advocated by Kitano.

View Article and Find Full Text PDF

Unlabelled: BIOCHAM (the BIOCHemical Abstract Machine) is a software environment for modeling biochemical systems. It is based on two aspects: (1) the analysis and simulation of boolean, kinetic and stochastic models and (2) the formalization of biological properties in temporal logic. BIOCHAM provides tools and languages for describing protein networks with a simple and straightforward syntax, and for integrating biological properties into the model.

View Article and Find Full Text PDF