Publications by authors named "Sylvain Sergent"

We propose a novel type of nanowire (NW)-induced nanocavity based on photonic crystal disks, and we investigate its design by three-dimensional finite-difference time-domain calculations. We detail the confinement principle used in such a cavity and discuss the influence of geometric and material parameters on the cavity performance. Finally, we report on an optimized design presenting a quality factor Q=7.

View Article and Find Full Text PDF

Nanowire-induced SiN photonic crystal (PhC) nanocavities specifically designed for the ultra-violet and visible range are investigated by three-dimensional finite-difference time-domain calculations. As opposed to their silicon PhC counterpart, we find that the formation of nanowire-induced two-dimensional (2D) SiN PhC nanocavities is more challenging because of the low refractive index of SiN. We thus discuss optimization strategies to circumvent such difficulties and we investigate the influence of critical design parameters such as PhC geometry, as well as nanowire geometry and position.

View Article and Find Full Text PDF

Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength.

View Article and Find Full Text PDF