Publications by authors named "Sylvain Rat"

The influence of structural modifications on the catalytic activity of carbon materials is poorly understood. A collection of carbonaceous materials with different pore networks and high nitrogen content was characterized and used to catalyze four reactions to deduce structure-activity relationships. The CO cycloaddition and Knoevenagel reaction depend on Lewis basic sites (electron-rich nitrogen species).

View Article and Find Full Text PDF

Resistance switching properties of nanoscale junctions of spin crossover molecules have received recently much interest. In many cases, this property has been traced back to the variation of molecular orbital energies upon spin transition. However, one can also expect a substantial reorganization of the molecular structure due to charge localization, which calls for a better understanding of the relationship between the redox potential and the spin state of the molecule.

View Article and Find Full Text PDF

Molecular spin crossover complexes are promising candidates for mechanical actuation purposes. The relationships between their crystal structure and mechanical properties remain, however, not well understood. In this study, combining high pressure synchrotron X-ray diffraction, nuclear inelastic scattering, and micromechanical measurements, we assessed the effective macroscopic bulk modulus ( B = 11.

View Article and Find Full Text PDF

Using optical microscopy we studied the vacuum pressure dependence (0.1-1000 mbar) of the nucleation and growth dynamics of the thermally induced first-order spin transition in a single crystal of the spin-crossover compound [Fe(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl). A crossover between a quasi-static hysteresis regime and a temperature-scan-rate-dependent kinetic regime is evidenced around 5 mbar due to the change of the heat exchange coupling between the crystal and its external environment.

View Article and Find Full Text PDF

Spin crossover particles of formula [Fe{(Htrz) (trz)} (NH -trz) ](BF ) and average size of 20 nm ± 8 nm are homogeneously dispersed in poly(vinylidene fluoride-co-trifluoro-ethylene), P(VDF-TrFE), and poly(vinylidene fluoride) (PVDF) matrices to form macroscopic (cm-scale), freestanding, and flexible nanocomposite materials. The composites exhibit concomitant thermal expansion and discharge current peaks on cycling around the spin transition temperatures, i.e.

View Article and Find Full Text PDF

Nanoscale spin crossover materials capable of undergoing reversible switching between two electronic configurations with markedly different physical properties are excellent candidates for various technological applications. In particular, they can serve as active materials for storing and processing information in photonic, mechanical, electronic, and spintronic devices as well as for transducing different forms of energy in sensors and actuators. In this progress report, a brief overview on the current state-of-the-art of experimental and theoretical studies of nanomaterials displaying spin transition is presented.

View Article and Find Full Text PDF

We report on a bistable MEMS device actuated by spin-crossover molecules. The device consists of a freestanding silicon microcantilever with an integrated piezoresistive detection system, which was coated with a 140 nm thick film of the [Fe(HB(tz) ) ] (tz=1,2,4-triazol-1-yl) molecular spin-crossover complex. Switching from the low-spin to the high-spin state of the ferrous ions at 338 K led to a reversible upward bending of the cantilever in agreement with the change in the lattice parameters of the complex.

View Article and Find Full Text PDF

The fabrication of large-area vertical junctions with a molecular spin-crossover complex displaying concerted changes of spin degrees of freedom and charge-transport properties is reported. Fabricated devices allow spin-state switching in the spin-crossover layer to be triggered and probed by optical means, while detecting associated changes in electrical resistance in the junctions.

View Article and Find Full Text PDF