Natural environments of living organisms are often dynamic and multifactorial, with multiple parameters fluctuating over time. To better understand how cells respond to dynamically interacting factors, we quantified the effects of dual fluctuations of osmotic stress and glucose deprivation on yeast cells using microfluidics and time-lapse microscopy. Strikingly, we observed that cell proliferation, survival, and signaling depend on the phasing of the two periodic stresses.
View Article and Find Full Text PDFMicrobial communities are shaped by complex metabolic interactions such as cooperation and competition for resources. Methods to control such interactions could lead to major advances in our ability to better engineer microbial consortia for synthetic biology applications. Here, we use optogenetics to control SUC2 invertase production in yeast, thereby shaping spatial assortment of cooperator and cheater cells.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2023
Optogenetics arises as a valuable tool to precisely control genetic circuits in microbial cell factories. Light control holds the promise of optimizing bioproduction methods and maximizing yields, but its implementation at different steps of the strain development process and at different culture scales remains challenging. In this study, we aim to control beta-carotene bioproduction using optogenetics in and investigate how its performance translates across culture scales.
View Article and Find Full Text PDFTimelapse fluorescence microscopy imaging is routinely used in quantitative cell biology. However, microscopes could become much more powerful investigation systems if they were endowed with simple unsupervised decision-making algorithms to transform them into fully responsive and automated measurement devices. Here, we report CyberSco.
View Article and Find Full Text PDFProgress in metabolic engineering and synthetic and systems biology has made bioproduction an increasingly attractive and competitive strategy for synthesizing biomolecules, recombinant proteins and biofuels from renewable feedstocks. Yet, due to poor productivity, it remains difficult to make a bioproduction process economically viable at large scale. Achieving dynamic control of cellular processes could lead to even better yields by balancing the two characteristic phases of bioproduction, namely, growth production, which lie at the heart of a trade-off that substantially impacts productivity.
View Article and Find Full Text PDF