Publications by authors named "Sylvain Pichard"

The retrograde transport inhibitor Retro-2 has a protective effect on cells and in mice against Shiga-like toxins and ricin. Retro-2 causes toxin accumulation in early endosomes and relocalization of the Golgi SNARE protein syntaxin-5 to the endoplasmic reticulum. The molecular mechanisms by which this is achieved remain unknown.

View Article and Find Full Text PDF

Cytotoxic necrotizing factor 1 (CNF1) is a toxin produced by pathogenic strains of Escherichia coli responsible for extra-intestinal infections. CNF1 deamidates Rac1, thereby triggering its permanent activation and worsening inflammatory reactions. Activated Rac1 is prone to proteasomal degradation.

View Article and Find Full Text PDF

Botulinum neurotoxin A (BoNT/A) is composed of three domains: a catalytic domain (LC), a translocation domain (HN) and a receptor-binding domain (HC). Like most bacterial toxins BoNT/A is an amphitropic protein, produced in a soluble form that is able to interact, penetrate and/or cross a membrane to achieve its toxic function. During intoxication BoNT/A is internalized by the cell by receptor-mediated endocytosis.

View Article and Find Full Text PDF

We showed that bee venom phospholipase A2 can be used as a membrane-binding vector to anchor to the surface of cells a soluble protein fused to its C-terminus. ZZ, a two-domain derivative of staphylococcal protein A capable of binding constant regions of antibodies was fused to the C-terminus of the phospholipase or to a mutant devoid of enzymatic activity. The fusion proteins bound to the surface of cells and could themselves bind IgGs.

View Article and Find Full Text PDF

Random epigenetic silencing of the X-chromosome in somatic tissues of female mammals equalizes the dosage of X-linked genes between the sexes. Unlike this form of X-inactivation that is essentially irreversible, the imprinted inactivation of the paternal X, which characterizes mouse extra-embryonic tissues, appears highly unstable in the trophoblast giant cells of the placenta. Here, we wished to determine whether such instability is already present in placental progenitor cells prior to differentiation toward lineage-specific cell types.

View Article and Find Full Text PDF

The accumulation of amyloid fibers due to protein misfolding is associated with numerous human diseases. For example, the formation of amyloid deposits in neurodegenerative pathologies is correlated with abnormal apoptosis. We report here the in vitro formation of various types of aggregates by Bcl-xL, a protein of the Bcl-2 family involved in the regulation of apoptosis.

View Article and Find Full Text PDF

The translocation domain of diphtheria toxin inserts in membrane and becomes functional when the pH inside endosomes is acid. At that stage, the domain is in a partially folded state; this prevents the use of high-resolution methods for the characterization of its functional structure. On that purpose, we report here the use of hydrogen/deuterium exchange experiments coupled to mass spectrometry.

View Article and Find Full Text PDF

During cell intoxication by diphtheria toxin, endosome acidification triggers the translocation of the catalytic (C) domain into the cytoplasm. This event is mediated by the translocation (T) domain of the toxin. Previous work suggested that the T domain acts as a chaperone for the C domain during membrane penetration of the toxin.

View Article and Find Full Text PDF

The translocation domain (T domain) of diphtheria toxin adopts a partially folded state, the so-called molten globule state, to become functional at acidic pH. We compared, using hydrogen/deuterium exchange experiments associated with MS, the structures of the T domain in its soluble folded state at neutral pH and in its functional molten globule state at acidic pH. In the native state, the alpha-helices TH5 and TH8 are identified as the core of the domain.

View Article and Find Full Text PDF

We describe the creation of cell adhesion mediated by cell surface engineering. The Flt3-ligand was fused to a membrane anchor made of the diphtheria toxin translocation domain. The fusion protein was attached to the surface of a cell by an acid pulse.

View Article and Find Full Text PDF

The translocation domain (T domain) of the diphtheria toxin contributes to the transfer of the catalytic domain from the cell endosome to the cytosol, where it blocks protein synthesis. Translocation is initiated when endosome acidification induces the interaction of the T domain with the membrane of the compartment. We found that the protonation of histidine side chains triggers the conformational changes required for membrane interaction.

View Article and Find Full Text PDF

During intoxication of a cell, the translocation (T) domain of the diphtheria toxin helps the passage of the catalytic domain across the membrane of the endosome into the cytoplasm. We have investigated the behavior of the N-terminal region of the T domain during the successive steps of its interaction with membranes at acidic pH using tryptophan fluorescence, its quenching by brominated lipids, and trypsin digestion. The change in the environment of this region was monitored using mutant W281F carrying a single native tryptophan at position 206 at the tip of helix TH1.

View Article and Find Full Text PDF

X-chromosome inactivation (XCI) is highly dynamic during early mouse embryogenesis and strictly depends on the Xist noncoding RNA. The regulation of Xist and its antisense partner Tsix remains however poorly understood. We provide here the first evidence of transcriptional control of Xist expression.

View Article and Find Full Text PDF