Publications by authors named "Sylvain Peuget"

Inactivation of the most important tumour suppressor gene TP53 occurs in most, if not all, human cancers. Loss of functional wild-type p53 is achieved via two main mechanisms: mutation of the gene leading to an absence of tumour suppressor activity and, in some cases, gain-of-oncogenic function; or inhibition of the wild-type p53 protein mediated by overexpression of its negative regulators MDM2 and MDMX. Because of its high potency as a tumour suppressor and the dependence of at least some established tumours on its inactivation, p53 appears to be a highly attractive target for the development of new anticancer drugs.

View Article and Find Full Text PDF

In this issue of Cancer Discovery, Adams and colleagues present the discovery of a potent PROTAC, MDM2 degrader, which activates wild-type p53 leading to cancer cell death. Importantly, in a number of in vitro and in vivo experiments, the authors show that the depletion of MDM2 by PROTAC kills p53-mutant or p53-null cancer cells. See related article by Adams et al.

View Article and Find Full Text PDF

Background: p53 mutants contribute to the chronic inflammatory tumour microenvironment (TME). In this study, we address the mechanism of how p53 mutants lead to chronic inflammation in tumours and how to transform it to restore cancer immune surveillance.

Methods: Our analysis of RNA-seq data from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) project revealed that mutant p53 (mtp53) cancers correlated with chronic inflammation.

View Article and Find Full Text PDF

Reactivation of p53 tumor-suppressor function by small molecules is an attractive strategy to defeat cancer. A potent p53-reactivating molecule RITA, which triggers p53-dependent apoptosis in human tumor cells in vitro and in vivo, exhibits p53-independent cytotoxicity due to modifications by detoxification enzyme Sulfotransferase 1A1 (SULT1A1), producing a reactive carbocation. Several synthetic modifications to RITA's heterocyclic scaffold lead to higher energy barriers for carbocation formation.

View Article and Find Full Text PDF

Increasing evidence highlights the role of bacteria in the physiopathology of cancer. However, the underlying molecular mechanisms remains poorly understood. Several cancer-associated bacteria have been shown to produce toxins which interfere with the host defense against tumorigenesis.

View Article and Find Full Text PDF

p53 is a major tumor suppressor that integrates diverse types of signaling in mammalian cells. In response to a broad range of intra- or extra-cellular stimuli, p53 controls the expression of multiple target genes and elicits a vast repertoire of biological responses. The exact code by which p53 integrates the various stresses and translates them into an appropriate transcriptional response is still obscure.

View Article and Find Full Text PDF

Background: The estrogen receptor (ER)-positive breast cancer represents over 80% of all breast cancer cases. Even though adjuvant hormone therapy with tamoxifen (TMX) is saving lives of patients with ER-positive breast cancer, the acquired resistance to TMX anti-estrogen therapy is the main hurdle for successful TMX therapy. Here we address the mechanism for TMX resistance and explore the ways to eradicate TMX-resistant breast cancer in both in vitro and ex vivo experiments.

View Article and Find Full Text PDF

Identification of the molecular mechanism of action (MoA) of bioactive compounds is a crucial step for drug development but remains a challenging task despite recent advances in technology. In this study, we applied multidimensional proteomics, sensitivity correlation analysis, and transcriptomics to identify a common MoA for the anticancer compounds RITA, aminoflavone (AF), and oncrasin-1 (Onc-1). Global thermal proteome profiling revealed that the three compounds target mRNA processing and transcription, thereby attacking a cancer vulnerability, transcriptional addiction.

View Article and Find Full Text PDF

Pifithrin-α (PFT-α) is a small molecule which has been widely used as a specific inhibitor of p53 transcription activity. However, its molecular mechanism of action remains unclear. PFT-α has also been described to display potent p53-independent activity in cells.

View Article and Find Full Text PDF

Tumor protein 53 (p53, encoded by the TP53 gene) is a key tumor suppressor regulating cell fates in response to internal and external stresses. As TP53 is mutated or silenced in a majority of tumors, reactivation of p53 by small molecules represents a promising strategy in cancer therapeutics. One such agent is RITA (reactivation of p53 and induction of tumor cell apoptosis), which restores p53 expression in cells with hyperactive HDM2 and induces apoptosis.

View Article and Find Full Text PDF

p53 is the major tumor suppressor and the most frequently inactivated gene in cancer. p53 could be disabled either by mutations or by upstream negative regulators, including, but not limited to MDM2 and MDMX. p53 activity is required for the prevention as well as for the eradication of cancers.

View Article and Find Full Text PDF

Despite the widening range of high-throughput platforms and exponential growth of generated data volume, the validation of biomarkers discovered from large-scale data remains a challenging field. In order to tackle cancer heterogeneity and comply with the data dimensionality, a number of network and pathway approaches were invented but rarely systematically applied to this task. We propose a new method, called NEAmarker, for finding sensitive and robust biomarkers at the pathway level.

View Article and Find Full Text PDF

Estimates of noble gas solubility in glasses and minerals are important to understand the origin of these gases, particularly xenon, in the atmosphere. However, technical difficulties and ambiguities in quantifying the dissolved gases introduce large uncertainties in the solubility estimates. We present here the use of transmission electron microscopy (TEM) with in-situ noble gas ion implantation as a non-equilibrium approach for noble gas solubility estimates.

View Article and Find Full Text PDF

Pu(III), Pu(IV), and a higher oxidation state of Pu, likely Pu(VI), are for the first time characterized simultaneously present in a borosilicate glass using Pu M edge high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We illustrate that the method can be very efficiently used to determine Pu oxidation states, which control the solubility limit of Pu in a glass matrix. HR-XANES results show that the addition of excess SiN is not sufficient for complete reduction of Pu to Pu(III), which has a relatively high solubility limit (9-22 wt % Pu) due to its network-modifying behavior in glasses.

View Article and Find Full Text PDF

Molybdenum solubility is a limiting factor to actinide loading in nuclear waste glasses, as it initiates the formation of water-soluble crystalline phases such as alkali molybdates. To increase waste loading efficiency, alternative glass ceramic structures are sought that prove resistant to internal radiation resulting from radioisotope decay. In this study, selective formation of water-durable CaMoO in a soda lime borosilicate is achieved by introducing up to 10 mol % MoO in a 1:1 ratio to CaO using a sintering process.

View Article and Find Full Text PDF

Safe management of high level nuclear waste is a worldwide significant issue for which vitrification has been selected by many countries. There exists a crucial need for improving our understanding of the ageing of the glass under irradiation. While external irradiation by ions provides a rapid simulation of damage induced by alpha decays, short lived actinide doping is more representative of the reality.

View Article and Find Full Text PDF

Small noncoding miRNAs represent underexplored targets of genomic aberrations and emerging therapeutic targets. The 3q26.2 amplicon is among the most frequent genomic aberrations in multiple cancer lineages including ovarian and breast cancers.

View Article and Find Full Text PDF

Oxidative stress-induced sumoylation of TP53INP1 (tumor protein p53-induced nuclear protein 1) is essential to enhance the TP53 response. Sumoylation of TP53INP1 on the K113 residue, which is mediated by protein inhibitor of activated STAT 3 (PIAS3) and chromobox homolog 4 (CBX4) and removed by SUMO1/sentrin specific peptidase (SENP1, 2 and 6), favors its interaction with TP53 in the nucleus and enhances TP53-induced gene expression.

View Article and Find Full Text PDF

Tumor protein p53-induced nuclear protein 1 (TP53INP1) is involved in cell stress response. Its expression is lost at the pancreatic intraepithelial neoplasia 1b (PanIN1b)/PanIN2 stage of pancreatic carcinogenesis. Our objective was to determine whether TP53INP1 loss of expression contributes to pancreatic cancer formation in a conditional KrasG12D mouse model.

View Article and Find Full Text PDF

Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) plays an important role during cell stress response in synergy with the potent "genome-keeper" p53. In human, the gene encoding TP53INP1 is expressed at very high level in some pathological situations, such as inflammation and prostate cancer (PC). TP53INP1 overexpression in PC seems to be a worse prognostic factor, particularly predictive of biological cancer relapse, making TP53INP1 a relevant specific target for molecular therapy of Castration Resistant (CR) PC.

View Article and Find Full Text PDF