The emergence and worldwide spread of SARS-CoV-2 raises new concerns and challenges regarding possible environmental contamination by this virus through spillover of human sewage, where it has been detected. The coastal environment, under increasing anthropogenic pressure, is subjected to contamination by a large number of human viruses from sewage, most of them being non-enveloped viruses like norovirus. When reaching coastal waters, they can be bio-accumulated by filter-feeding shellfish species such as oysters.
View Article and Find Full Text PDFDuring a 2-year study, the presence of human pathogenic bacteria and noroviruses was investigated in shellfish, seawater and/or surface sediments collected from three French coastal shellfish-harvesting areas as well as in freshwaters from the corresponding upstream catchments. Bacteria isolated from these samples were further analyzed. isolates classified into the phylogenetic groups B2, or D and enterococci from and species were tested for the presence of virulence genes and for antimicrobial susceptibility.
View Article and Find Full Text PDFUsing samples from oysters clearly implicated in human disease, we quantified norovirus levels by using digital PCR. Concentrations varied from 43 to 1,170 RNA copies/oyster. The analysis of frozen samples from the production area showed the presence of norovirus 2 weeks before consumption.
View Article and Find Full Text PDFA production area repeatedly implicated in oyster-related gastroenteritis in France was studied for several months over 2 years. Outbreaks and field samples were analyzed by undertaking triplicate extractions, followed by norovirus (NoV) detection using triplicate wells for genomic amplification. This approach allowed us to demonstrate that some variabilities can be observed for samples with a low level of contamination, but most samples analyzed gave reproducible results.
View Article and Find Full Text PDFNorovirus is the most common agent implicated in food-borne outbreaks and is frequently detected in environmental samples. These viruses are highly diverse, and three genogroups (genogroup I [GI], GII, and GIV) infect humans. Being noncultivable viruses, real-time reverse transcription-PCR (RT-PCR) is the only sensitive method available for their detection in food or environmental samples.
View Article and Find Full Text PDFBivalve molluscan shellfish such as oysters may be contaminated by human pathogens. Currently, the primary pathogens associated with shellfish-related outbreaks are noroviruses. This study was conducted to improve understanding of oyster bioaccumulation when oysters were exposed to daily contamination or one accidental contamination event, i.
View Article and Find Full Text PDFThe aim of this study was to evaluate the presence of human enteric viruses in shellfish collected along the Mediterranean Sea and Atlantic Coast of Morocco. A total of 77 samples were collected from areas potentially contaminated by human sewage. Noroviruses were detected in 30 % of samples, with an equal representation of GI and GII strains, but were much more frequently found in cockles or clams than in oysters.
View Article and Find Full Text PDFAppl Environ Microbiol
August 2011
To evaluate membrane bioreactor wastewater treatment virus removal, a study was conducted in southwest France. Samples collected from plant influent, an aeration basin, membrane effluent, solid sludge, and effluent biweekly from October 2009 to June 2010 were analyzed for calicivirus (norovirus and sapovirus) by real-time reverse transcription-PCR (RT-PCR) using extraction controls to perform quantification. Adenovirus and Escherichia coli also were analyzed to compare removal efficiencies.
View Article and Find Full Text PDFNoroviruses (NoVs) are the main agents of gastroenteritis in humans and the primary pathogens of shellfish-related outbreaks. Some NoV strains bind to shellfish tissues by using carbohydrate structures similar to their human ligands, leading to the hypothesis that such ligands may influence bioaccumulation. This study compares the bioaccumulation efficiencies and tissue distributions in oysters (Crassostrea gigas) of three strains from the two principal human norovirus genogroups.
View Article and Find Full Text PDFNoroviruses have been recognized to be the predominant agents of nonbacterial gastroenteritis outbreaks in humans, and their transmission via contaminated shellfish consumption has been demonstrated. Norovirus laboratory experiments, volunteer challenge studies, and community gastroenteritis outbreak investigations have identified human genetic susceptibility factors related to histo-blood group antigen expression. Following a banquet in Brittany, France, in February 2008, gastroenteritis cases were linked to oyster consumption.
View Article and Find Full Text PDFNoroviruses (NoVs) are the most common viral agents of acute gastroenteritis in humans, and high concentrations of NoVs are discharged into the environment. As these viruses are very resistant to inactivation, the sanitary consequences are contamination of food, including molluscan shellfish. There are four major problems with NoV detection in shellfish samples: low levels of virus contamination, the difficulty of efficient virus extraction, the presence of interfering substances that inhibit molecular detection, and NoV genetic variability.
View Article and Find Full Text PDFFollowing a flooding event close to a shellfish production lagoon, 205 cases of gastroenteritis were linked to oyster consumption. Twelve stool samples from different individuals were collected. Analysis showed that eight samples were positive for multiple enteric viruses, and one stool sample had seven different enteric viruses.
View Article and Find Full Text PDFNoroviruses, an important cause of gastroenteritis, are excreted by infected individuals and are therefore present in wastewater. We quantified norovirus genogroup I (GI) and GII in wastewater at different locations in France and evaluated removal by a range of treatment types, including basic (waste stabilization pond), current industry standard (activated sludge), and state-of-the-art (submerged membrane bioreactor) treatments. Noroviruses were quantified using real-time reverse transcription-PCR (rRT-PCR).
View Article and Find Full Text PDF