Targeted removal experiments are a powerful tool to assess the effects of plant species or (functional) groups on ecosystem functions. However, removing plant biomass in itself can bias the observed responses. This bias is commonly addressed by waiting until ecosystem recovery, but this is inherently based on unverified proxies or anecdotal evidence.
View Article and Find Full Text PDFThe Northern high latitudes are warming twice as fast as the global average, and permafrost has become vulnerable to thaw. Changes to the environment during thaw leads to shifts in microbial communities and their associated functions, such as greenhouse gas emissions. Understanding the ecological processes that structure the identity and abundance (i.
View Article and Find Full Text PDFThicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow-free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging.
View Article and Find Full Text PDFSince the publication of the original article, the authors noticed some errors in reference citation had been introduced throughout the paper. The following text contains excerpts from the original article and how they should appear with correct referencing. The publisher apologises for any inconvenience this has caused readers.
View Article and Find Full Text PDFThe decomposition of large stocks of soil organic carbon in thawing permafrost might depend on more than climate change-induced temperature increases: indirect effects of thawing via altered bacterial community structure (BCS) or rooting patterns are largely unexplored. We used a 10-year in situ permafrost thaw experiment and aerobic incubations to investigate alterations in BCS and potential respiration at different depths, and the extent to which they are related with each other and with root density. Active layer and permafrost BCS strongly differed, and the BCS in formerly frozen soils (below the natural thawfront) converged under induced deep thaw to strongly resemble the active layer BCS, possibly as a result of colonization by overlying microorganisms.
View Article and Find Full Text PDFThe emergence of high-throughput DNA sequencing methods provides unprecedented opportunities to further unravel bacterial biodiversity and its worldwide role from human health to ecosystem functioning. However, despite the abundance of sequencing studies, combining data from multiple individual studies to address macroecological questions of bacterial diversity remains methodically challenging and plagued with biases. Here, using a machine-learning approach that accounts for differences among studies and complex interactions among taxa, we merge 30 independent bacterial data sets comprising 1,998 soil samples from 21 countries.
View Article and Find Full Text PDFHelictites--an enigmatic type of mineral structure occurring in some caves--differ from classical speleothems as they develop with orientations that defy gravity. While theories for helictite formation have been forwarded, their genesis remains equivocal. Here, we show that a remarkable suite of helictites occurring in Asperge Cave (France) are formed by biologically-mediated processes, rather than abiotic processes as had hitherto been proposed.
View Article and Find Full Text PDF