RNA-binding proteins (RBPs) are found at replication forks, but their direct interaction with DNA-embedded RNA species remains unexplored. Here, we report that p53-binding protein 1 (53BP1), involved in the DNA damage and replication stress response, is an RBP that directly interacts with Okazaki fragments in the absence of external stress. The recruitment of 53BP1 to nascent DNA shows susceptibility to in situ ribonuclease A treatment and is dependent on PRIM1, which synthesizes the RNA primer of Okazaki fragments.
View Article and Find Full Text PDFIntronic polyadenylation (IPA) isoforms, which contain alternative last exons, are widely regulated in various biological processes and by many factors. However, little is known about their cytoplasmic regulation and translational status. In this study, we provide the first evidence that the genome-wide patterns of IPA isoform regulation during a biological process can be very distinct between the transcriptome and translatome, and between the nucleus and cytosol.
View Article and Find Full Text PDFmutations are recurrent in cancer and result in aberrant splicing of a previously defined set of genes. Here, we investigated the fate of aberrant transcripts induced by mutant SF3B1 and the related functional consequences. We first demonstrate that mutant SF3B1 does not alter global nascent protein synthesis, suggesting target-dependent consequences.
View Article and Find Full Text PDFThe BRCA2 tumor suppressor is a DNA double-strand break (DSB) repair factor essential for maintaining genome integrity. BRCA2-deficient cells spontaneously accumulate DNA-RNA hybrids, a known source of genome instability. However, the specific role of BRCA2 on these structures remains poorly understood.
View Article and Find Full Text PDFCancer persister cells tolerate anticancer drugs and serve as the founders of acquired resistance and cancer relapse. Here we show that a subpopulation of BRAF mutant melanoma cells that tolerates exposure to BRAF and MEK inhibitors undergoes a reversible remodelling of mRNA translation that evolves in parallel with drug sensitivity. Although this process is associated with a global reduction in protein synthesis, a subset of mRNAs undergoes an increased efficiency in translation.
View Article and Find Full Text PDFVitamin C (VitC) possesses pro-oxidant properties at high pharmacologic concentrations which favor repurposing VitC as an anti-cancer therapeutic agent. However, redox-based anticancer properties of VitC are yet partially understood. We examined the difference between the reduced and oxidized forms of VitC, ascorbic acid (AA) and dehydroascorbic acid (DHA), in terms of cytotoxicity and redox mechanisms toward breast cancer cells.
View Article and Find Full Text PDFSoil remediation industries continue to seek technologies to speed-up treatment and reduce operating costs. Some processes are energy intensive and, in some cases, transport can be the main source of carbon emissions. Residual fertilizing materials (RFM), such as organic residues, have the potential to be beneficial bioremediation agents.
View Article and Find Full Text PDFPreventing the immune escape of tumor cells by blocking inhibitory checkpoints, such as the interaction between programmed death ligand-1 (PD-L1) and programmed death-1 (PD-1) receptor, is a powerful anticancer approach. However, many patients do not respond to checkpoint blockade. Tumor PD-L1 expression is a potential efficacy biomarker, but the complex mechanisms underlying its regulation are not completely understood.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2017
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder resulting from a polyglutamine expansion in the huntingtin (HTT) protein. There is currently no cure for this disease, but recent studies suggest that RNAi to downregulate the expression of both normal and mutant HTT is a promising therapeutic approach. We previously developed a small hairpin RNA (shRNA), vectorized in an HIV-1-derived lentiviral vector (LV), that reduced pathology in an HD rodent model.
View Article and Find Full Text PDFUVA radiation (320-400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation.
View Article and Find Full Text PDFTemplate switching induced by stalled replication forks has recently been proposed to underlie complex genomic rearrangements. However, the resulting models are not supported by robust physical evidence. Here, we analyzed replication and recombination intermediates in a well-defined fission yeast system that blocks replication forks.
View Article and Find Full Text PDFBackground: The development of large genomic resources has become a prerequisite to elucidate the wide-scale evolution of genomes and the molecular basis of complex traits. Linkage maps represent a first level of integration and utilization of such resources and the primary framework for molecular analyses of quantitative traits. Previously published linkage maps have already outlined the main peculiarities of the rainbow trout meiosis and a correspondance between linkage groups and chromosome arms has been recently established using fluorescent in situ hybridization.
View Article and Find Full Text PDF