Microwave energy can be advantageously used for materials processing as it provides high heating rates and homogeneous temperature field distribution. These features are partly due to the large microwave penetration depth into dielectric materials which is, at room temperature, a few centimeters in most dielectric materials. However, up to now, this technology is not widely spread for high-temperature material processing applications (>1200 °C), because its reproducibly and ability to sinter large size samples (>30 cm) still needs to be improved.
View Article and Find Full Text PDFThe ultra fast synthesis of nanocrystalline Mg(2)Si was carried out using microwave radiation. The elemental precursors were first milled together under dry conditions to get fine particles. The resulting mixture of powders of Mg and Si was cold pressed before being heated by microwave irradiation.
View Article and Find Full Text PDFJ Microw Power Electromagn Energy
July 2011
A specific TE10m microwave cavity has been designed to follow-up the shrinkage during the microwave sintering of ceramics powders using an optical based position sensing device. The basic principle consists in measuring the distance from a laser source to the sample surface by means of a triangulation method. The spatial resolution device is around a few micrometers that enables to accurately measure the shrinkage versus time of a microwave irradiated sample.
View Article and Find Full Text PDF