Publications by authors named "Sylvain Hansen"

Neovascular age-related macular degeneration (nAMD) is the leading cause of blindness in aging populations. Here, we applied metabolomics to human sera of patients with nAMD during an active (exudative) phase of the pathology and found higher lactate levels and a shift in the lipoprotein profile (increased VLDL-LDL/HDL ratio). Similar metabolomics changes were detected in the sera of mice subjected to laser-induced choroidal neovascularization (CNV).

View Article and Find Full Text PDF

Introduction: As a complement to the classic metabolomics biofluid studies, the visualisation of the metabolites contained in cells or tissues could be a very powerful tool to understand how the local metabolism and biochemical pathways could be affected by external or internal stimuli or pathologies. Therefore, extraction and/or lysis is necessary to obtain samples adapted for use with the current analytical tools (liquid NMR and MS). These extraction or lysis work-ups are often the most labour-intensive and rate-limiting steps in metabolomics, as they require accuracy and repeatability as well as robustness.

View Article and Find Full Text PDF

The mouse model of laser-induced choroidal neovascularization (CNV) has been used extensively in studies of the exudative form of age-related macular degeneration (AMD). This experimental in vivo model relies on laser injury to perforate Bruch's membrane, resulting in subretinal blood vessel recruitment from the choroid. By recapitulating the main features of the exudative form of human AMD, this assay has served as the backbone for testing antiangiogenic therapies.

View Article and Find Full Text PDF

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by arteriovenous malformations and hemorrhages. This vascular disease results mainly from mutations in 2 genes involved in the TGF-β pathway (ENG and ALK1) that are exclusively expressed by endothelial cells. The present study identified miR-27a and miR-205 as two circulating miRNAs differentially expressed in HHT patients.

View Article and Find Full Text PDF