Chemical erosion, one of the two major erosion processes along with mechanical erosion, occurs when a soluble rock-like salt, gypsum, or limestone is dissolved in contact with a water flow. The coupling between the geometry of the rocks, the mass transfer, and the flow leads to the formation of remarkable patterns, like scallop patterns in caves. We emphasize the common presence of very sharp shapes and spikes, despite the diversity of hydrodynamic conditions and the nature of the soluble materials.
View Article and Find Full Text PDFModern dune fields are valuable sources of information for the large-scale analysis of terrestrial and planetary environments and atmospheres, but their study relies on understanding the small-scale dynamics that constantly generate new dunes and reshape older ones. Here, we designed a landscape-scale experiment at the edge of the Gobi desert, China, to quantify the development of incipient dunes under the natural action of winds. High-resolution topographic data documenting 42 mo of bedform dynamics are examined to provide a spectral analysis of dune pattern formation.
View Article and Find Full Text PDFWhen a fluid interface is subjected to a strong viscous flow, it tends to develop near-conical ends with pointed tips so sharp that their radius of curvature is undetectable. In microfluidic applications, tips can be made to eject fine jets, from which micrometer-sized drops can be produced. Here we show theoretically that the opening angle of the conical interface varies on a logarithmic scale as a function of the distance from the tip, owing to nonlocal coupling between the tip and the external flow.
View Article and Find Full Text PDFThe dissolution of rocks by rainfall commonly generates streamwise parallel channels, yet the occurrence of these natural patterns remains to be understood. Here, we report the emergence in the laboratory of a streamwise dissolution pattern at the surface of an initially flat soluble material, inclined and subjected to a thin runoff water flow. Nearly parallel grooves about 1 mm wide and directed along the main slope spontaneously form.
View Article and Find Full Text PDFThe uplift of an initially flat elastic membrane by an upward viscous flow is investigated experimentally. The deformed shape of the membrane results from a balance between the flow pressure, the elastic response of the membrane, and the fluid weight. This last effect becomes non-negligible for a large enough deformed area.
View Article and Find Full Text PDFRaked linear dunes keep a constant orientation for considerable distances with a marked asymmetry between a periodic pattern of semi-crescentic structures on one side and a continuous slope on the other. Here we show that this shape is associated with a steady-state dune type arising from the coexistence of two dune growth mechanisms. Primary ridges elongate in the direction of the resultant sand flux.
View Article and Find Full Text PDFThe exploration of the phase diagram of a minimal model for barchan fields leads to the description of three distinct phases for the system: stationary, percolable, and unstable. In the stationary phase the system always reaches an out-of-equilibrium, fluctuating, stationary state, independent of its initial conditions. This state has a large and continuous range of dynamics, from dilute-where dunes do not interact-to dense, where the system exhibits both spatial structuring and collective behavior leading to the selection of a particular size for the dunes.
View Article and Find Full Text PDFNew evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism and the subsequent dune orientation. Here we numerically investigate the development of bedforms in bidirectional wind regimes for two different conditions of sand availability: an erodible sand bed or a localized sand source on a non-erodible ground. These two conditions of sand availability are associated with two independent dune growth mechanisms and, for both of them, we present the complete phase diagrams of dune shape and orientation.
View Article and Find Full Text PDFLeaves are packed in a bud in different ways, being flat, rolled, or folded, but always filling the whole bud volume. This "filling law" has many consequences, in particular on the shapes of growing folded leaves. This is shown here for different types of folding and packing.
View Article and Find Full Text PDFSand is known to oppose an increasing resistance to penetration with depth. This is different from what happens in liquids since granular media, usually nonthermal systems, oppose solid friction to the motion. We report another striking and "counterintuitive" difference between the penetration dynamics observed in sand and in liquids.
View Article and Find Full Text PDFShape is one of the important characteristics for the structures observed in living organisms. Whereas biologists have proposed models where the shape is controlled on a molecular level [1], physicists, following Turing [2] and d'Arcy Thomson [3], have developed theories where patterns arise spontaneously [4]. Here, we propose that volume constraints restrict the possible shapes of leaves.
View Article and Find Full Text PDFSome desert sand dunes have the peculiar ability to emit a loud sound up to 110 dB, with a well-defined frequency: this phenomenon, known since early travelers (Darwin, Marco Polo, etc.), has been called the song of dunes. But only in late 19th century scientific observations were made, showing three important characteristics of singing dunes: first, not all dunes sing, but all the singing dunes are composed of dry and well-sorted sand; second, this sound occurs spontaneously during avalanches on a slip face; third this is not the only way to produce sound with this sand.
View Article and Find Full Text PDFWe perform experimental measurements of the instantaneous velocity profile of the flowing layer during granular avalanches. In the pile depth, the velocity profile follows a pure exponential decrease in contrast with steady flows that are known to exhibit a well developed upper linear part. The velocity profile in the pile width is a plug flow with two exponential boundary layers at the walls.
View Article and Find Full Text PDFThree regimes of granular avalanches in fluids are put in light depending on the Stokes number St which prescribes the relative importance of grain inertia and fluid viscous effects and on the grain/fluid density ratio r. In gas (r>>1 and St>1, e.g.
View Article and Find Full Text PDF