Ingestion of (-)-epicatechin flavanols reverses endothelial dysfunction by increasing flow mediated dilation and by reducing vascular inflammation and oxidative stress, monocyte-endothelial cell adhesion and transendothelial monocyte migration in vitro and in vivo. This involves multiple changes in gene expression and epigenetic DNA methylation by poorly understood mechanisms. By in silico docking and molecular modeling we demonstrate favorable binding of different glucuronidated, sulfated or methylated (-)-epicatechin metabolites to different DNA methyltransferases (DNMT1/DNMT3A).
View Article and Find Full Text PDFAlthough vasculo-protective effects of flavan-3-ols are widely accepted today, their impact on endothelial cell functions and molecular mechanisms of action involved is not completely understood. The aim of this study was to characterize the potential endothelium-protective effects of circulating epicatechin metabolites and to define underlying mechanisms of action by an integrated systems biology approach. Reduced leukocyte rolling over vascular endothelium was observed following epicatechin supplementation in a mouse model of inflammation.
View Article and Find Full Text PDFScope: Consumption of flavanol-rich foods is associated with an improvement in endothelial function. However, the specific biologically active flavanol metabolites involved in this benefit, as well as their molecular mechanisms of action have not been identified. The aim of this work was to examine the effect of plasma flavanol metabolites on adhesion of monocytes to TNF-α-activated endothelial cells and identify potential underlying mechanisms.
View Article and Find Full Text PDFElucidation of the relationships between genotype, diet, and health requires accurate dietary assessment. In intervention and epidemiological studies, dietary assessment usually relies on questionnaires, which are susceptible to recall bias. An alternative approach is to quantify biomarkers of intake in biofluids, but few such markers have been validated so far.
View Article and Find Full Text PDFFlavanones are found specifically and abundantly in citrus fruits. Their beneficial effect on vascular function is well documented. However, little is known about their cellular and molecular mechanisms of action in vascular cells.
View Article and Find Full Text PDF