Describing the determinants of robustness of biological systems has become one of the central questions in systems biology. Despite the increasing research efforts, it has proven difficult to arrive at a unifying definition for this important concept. We argue that this is due to the multifaceted nature of the concept of robustness and the possibility to formally capture it at different levels of systemic formalisms (e.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
January 2012
We discuss the propagation of constraints in eukaryotic interaction networks in relation to model prediction and the identification of critical pathways. In order to cope with posttranslational interactions, we consider two types of nodes in the network, corresponding to proteins and to RNA. Microarray data provides very lacunar information for such types of networks because protein nodes, although needed in the model, are not observed.
View Article and Find Full Text PDFCurrent analyses of co-expressed genes are often based on global approaches such as clustering or bi-clustering. An alternative way is to employ local methods and search for patterns--sets of genes displaying specific expression properties in a set of situations. The main bottleneck of this type of analysis is twofold--computational costs and an overwhelming number of candidate patterns which can hardly be further exploited.
View Article and Find Full Text PDFBackground: There is an increasing need in transcriptome research for gene expression data and pattern warehouses. It is of importance to integrate in these warehouses both raw transcriptomic data, as well as some properties encoded in these data, like local patterns.
Description: We have developed an application called SQUAT (SAGE Querying and Analysis Tools) which is available at: http://bsmc.
The production of high-throughput gene expression data has generated a crucial need for bioinformatics tools to generate biologically interesting hypotheses. Whereas many tools are available for extracting global patterns, less attention has been focused on local pattern discovery. We propose here an original way to discover knowledge from gene expression data by means of the so-called formal concepts which hold in derived Boolean gene expression datasets.
View Article and Find Full Text PDFBackground: The association-rules discovery (ARD) technique has yet to be applied to gene-expression data analysis. Even in the absence of previous biological knowledge, it should identify sets of genes whose expression is correlated. The first association-rule miners appeared six years ago and proved efficient at dealing with sparse and weakly correlated data.
View Article and Find Full Text PDF