Publications by authors named "Sylva Holesova"

The solvent casting method was used for five types of polyvinylidene difluoride (PVDF) nanocomposite film preparation. The effect of nanofillers in PVDF nanocomposite films on the structural, phase, and friction and mechanical properties was examined and compared with that of the natural PVDF film. The surface topography of PVDF nanocomposite films was investigated using a scanning electron microscope (SEM) and correlative imaging (CPEM, combinate AFM and SEM).

View Article and Find Full Text PDF

Today, Ni-Cr steel is used for advanced applications in the high-temperature and electrical industries, medical equipment, food industry, agriculture and is applied in food and beverage packaging and kitchenware, automotive or mesh. A study of input steel powder from various stages of the recycling process intended for 3D printing was conducted. In addition to the precise evaluation of the morphology, particle size and composition of the powders used for laser 3D printing, special testing and evaluation of the heat-treated powders were carried out.

View Article and Find Full Text PDF

High specific surface area (SSA), porous structure, and suitable technological characteristics (flow, compressibility) predetermine powder carriers to be used in pharmaceutical technology, especially in the formulation of liquisolid systems (LSS) and solid self-emulsifying delivery systems (s-SEDDS). Besides widely used microcrystalline cellulose, other promising materials include magnesium aluminometasilicates, mesoporous silicates, and silica aerogels. Clay minerals with laminar or fibrous internal structures also provide suitable properties for liquid drug incorporation.

View Article and Find Full Text PDF

The alumina and zirconia surfaces were pretreated with chemical etching using alkaline mixtures of ammonia, hydrogen peroxide and sodium hydroxide, and followed with application of the powder layer of Ca-deficient hydroxyapatite (CDH). The influence of etching bath conditions time and concentration on surface development, chemical composition and morphology of medicinal ceramic powders were studied. The following analyses were performed: morphology (scanning electron microscopy), phase composition (X-ray diffraction analysis), changes in binding interactions and chemical composition (FT-Infrared and Energy dispersive spectroscopies).

View Article and Find Full Text PDF

Infection with pathogenic microorganisms is of great concern in many areas, especially in healthcare, but also in food packaging and storage, or in water purification systems. Antimicrobial polymer nanocomposites have gained great popularity in these areas. Therefore, this study focused on new approaches to develop thin antimicrobial films based on biodegradable polycaprolactone (PCL) with clay mineral natural vermiculite as a carrier for antimicrobial compounds, where the active organic antimicrobial component is antifungal ciclopirox olamine (CPX).

View Article and Find Full Text PDF

The polyamide (PA)-12 material used for additive manufacturing was studied in aspects of morphology and their structural properties for basic stages received during 3D laser printing. Samples were real, big-scale production powders. The structure of polymer was evaluated from the crystallinity point of view using XRD, FTIR, and DSC methods and from the surface properties using specific surface evaluation and porosity.

View Article and Find Full Text PDF

Materials made from low-density polyethylene (LDPE) in the form of packages or catheters are currently commonly applied medical devices. Antimicrobial LDPE nanocomposite materials with two types of nanofillers, zinc oxide/vermiculite (ZnO/V) and zinc oxide/vermiculite_chlorhexidine (ZnO/V_CH), were prepared by a melt-compounded procedure to enrich their controllable antimicrobial, microstructural, topographical and tribo-mechanical properties. X-ray diffraction (XRD) analysis and Fourier transform infrared spectroscopy (FTIR) revealed that the ZnO/V and ZnO/V_CH nanofillers and LDPE interacted well with each other.

View Article and Find Full Text PDF

Microbial infection and biofilm formation are both problems associated with medical implants and devices. In recent years, hybrid organic-inorganic nanocomposites based on clay minerals have attracted significant attention due to their application potential in the field of antimicrobial materials. Organic drug/metal oxide hybrids exhibit improved antimicrobial activity, and intercalating the above materials into the interlayer of clay endows a long-term and controlled-release behavior.

View Article and Find Full Text PDF

The hybrid nanocomposite materials based on the vermiculite/zinc oxide-chlorhexidine were prepared in two steps. In the first step the vermiculite/zinc oxide nanocomposite was prepared by the mechanochemical method followed by a heat treatment at 650 °C for 90 min. In the second step the chlorhexidine dihydrochloride was intercalated to the vermiculite/zinc oxide nanocomposite in weight ratio 1:1, 1:2, 1:4, 2:1 and 4:1 (wt%) thereby vermiculite/zinc oxide-chlorhexidine nanocomposites were prepared.

View Article and Find Full Text PDF

Medical devices have an essential part in healthcare system in recent years, such as usage of heart valves, several types of stents and implants devices in patients. However, bacterial infection of medical devices causes critical issues for patients due to attachment of bacteria and formation of biofilm onto the medical devices. Therefore, finding an effective antibacterial coating to prevent biofilm formation and infection is our goal.

View Article and Find Full Text PDF

The set of polyethylene/clay nanocomposites with increasing amount of antimicrobial nanofiller (3, 6 and 10 wt%) was prepared by melt compounding procedure. The antimicrobial drug chlorhexidine diacetate was loaded into natural clay mineral vermiculite and also to its monoionic sodium form and then these organoclay nanofillers were incorporated into polymeric matrix. The structure of prepared organoclays and nanocomposites was studied by X-ray diffraction analysis and Fourier transforms infrared spectroscopy.

View Article and Find Full Text PDF

Infectious stomatitis represents the most common oral cavity ailments. Current therapy is insufficiently effective because of the short residence time of topical liquid or semisolid medical formulations. An innovative application form based on bioadhesive polymers featuring prolonged residence time on the oral mucosa may be a solution to this challenge.

View Article and Find Full Text PDF

Clay minerals have been proposed as very useful materials for modulating drug delivery. These are the commonly used materials in pharmaceutical production both as inorganic carriers or active agents. We focused on the development of suitable long-acting material for local treatment of oral infection where clay minerals act as inorganic drug carriers.

View Article and Find Full Text PDF

The novel antibacterial organovermiculites with different mass ratios of chlorhexidine diacetate (CA) were successfully prepared by ion exchange reactions. The resultant organovermiculites were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermal properties of prepared organovermiculites were investigated by simultaneous thermogravimetry (TG) and differential thermal analysis (DTA). The antibacterial activity of prepared organovermiculites against Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa was evaluated by finding minimum inhibitory concentration (MIC).

View Article and Find Full Text PDF