Through metal-assisted chemical etching (MaCE), superior purification of dirty Si is observed, from 99.74 to 99.9884% for metallurgical Si and from 99.
View Article and Find Full Text PDFHere we identify the recruitment of solvent ions to lipid membranes as the dominant regulator of lipid phase behavior. Our data demonstrate that binding of counterions to charged lipids promotes the formation of lamellar membranes, whereas their absence can induce fusion. The mechanism applies to anionic and cationic liposomes, as well as the recently introduced amphoteric liposomes.
View Article and Find Full Text PDFBorna disease virus (BDV) is a neurotropic enveloped RNA virus that causes a noncytolytic, persistent infection of the central nervous system in mammals. BDV belongs to the order Mononegavirales, which also includes the negative-strand RNA viruses (NSVs) Ebola, Marburg, vesicular stomatitis, rabies, mumps, and measles. BDV-M, the matrix protein (M-protein) of BDV, is the smallest M-protein (16.
View Article and Find Full Text PDFEndonuclease G (EndoG) is a mitochondrial enzyme believed to be released during apoptosis to participate in the degradation of nuclear DNA. This paper describes a Drosophila protein, EndoGI, which inhibits EndoG specifically. EndoG and EndoGI associate with subpicomolar affinity, forming a 2:1 complex in which dimeric EndoG is bound by two tandemly repeated homologous domains of monomeric EndoGI.
View Article and Find Full Text PDFAn essential constituent of the integrated stress response (ISR) is a reversible translational suppression. This mRNA silencing occurs in distinct cytoplasmic foci called stress granules (SGs), which transiently associate with processing bodies (PBs), typically serving as mRNA decay centers. How mRNAs are protected from degradation in these structures remains elusive.
View Article and Find Full Text PDFShortening of the poly(A) tail (deadenylation) is the first and often rate-limiting step in the degradation pathway of most eukaryotic mRNAs and is also used as a means of translational repression, in particular in early embryonic development. The nanos mRNA is translationally repressed by the protein Smaug in Drosophila embryos. The RNA has a short poly(A) tail at steady state and decays gradually during the first 2-3 h of development.
View Article and Find Full Text PDFThe control of mRNA degradation is an important component of the regulation of gene expression since the steady-state concentration of mRNA is determined both by the rates of synthesis and of decay. Two general pathways of mRNA decay have been described in eukaryotes. Both pathways share the exonucleolytic removal of the poly(A) tail (deadenylation) as the first step.
View Article and Find Full Text PDFThe CCR4-NOT complex is the major enzyme catalyzing mRNA deadenylation in Saccharomyces cerevisiae. We have identified homologs for almost all subunits of this complex in the Drosophila genome. Biochemical fractionation showed that the two likely catalytic subunits, CCR4 and CAF1, were associated with each other and with a poly(A)-specific 3' exonuclease activity.
View Article and Find Full Text PDFThe nuclear poly(A)-binding protein (PABPN1) is involved in the synthesis of the mRNA poly(A) tails in most eukaryotes. We report that the protein contains two RNA binding domains, a ribonucleoprotein-type RNA binding domain (RNP domain) located approximately in the middle of the protein sequence and an arginine-rich C-terminal domain. The C-terminal domain also promotes self-association of PABPN1 and moderately cooperative binding to RNA.
View Article and Find Full Text PDFWe have cloned cDNAs for the human homologues of the yeast Dcp1 and Dcp2 factors involved in the major (5'-3') and NMD mRNA decay pathways. While yeast Dcp1 has been reported to be the decapping enzyme, we show that recombinant human Dcp2 (hDcp2) is enzymatically active. Dcp2 activity appears evolutionarily conserved.
View Article and Find Full Text PDFThe nuclear poly(A) binding protein (PABPN1) binds the growing poly(A) tail during pre-mRNA 3'-end processing, stimulating its elongation and controlling its final length. Here we report binding studies of PABPN1 to poly(A) in solution. Quantitative fluorescence titration was used to determine the stoichiometry, intrinsic affinity, and cooperativity of binding to a series of size-fractionated poly(A).
View Article and Find Full Text PDF