ACS Appl Mater Interfaces
March 2023
Tendinopathies are poorly understood diseases for which treatment remains challenging. Relevant models to study human tendon physiology and pathophysiology are therefore highly needed. Here we propose the automated 3D writing of tendon microphysiological systems (MPSs) embedded in a biomimetic fibrillar support platform based on cellulose nanocrystals (CNCs) self-assembly.
View Article and Find Full Text PDFThe application of additive manufacturing in the biomedical field has become a hot topic in the last decade owing to its potential to provide personalized solutions for patients. Different bioinks have been designed trying to obtain a unique concoction that addresses all the needs for tissue engineering and drug delivery purposes, among others. Despite the remarkable progress made, the development of suitable bioinks which combine printability, cytocompatibility, and biofunctionality is still a challenge.
View Article and Find Full Text PDFAdv Mater Technol
September 2019
We report the fabrication of a tubular polydimethylsiloxane (PDMS) platform containing arrays of small pores on the wall for modeling blood vessels . The thin PDMS tubes are produced following our previously reported templating approach, while the pores are subsequently generated using focused laser ablation. As such, when these perforated PDMS tube are populated with a monolayer of endothelial cells on the interior surfaces and embedded within an extracellular matrix (ECM)-like environment, the endothelial cells can sprout out from the tubes into the surrounding matrix through the open pores.
View Article and Find Full Text PDFTwo new series of pyrazolobenzothiazine-based carbothioamides ( and ) were synthesized using saccharin as the starting material. The synthesized derivatives were investigated for their ability to inhibit monoamine oxidases (MAO). Compound was found to be a very potent MAO-A inhibitor with an IC value of 0.
View Article and Find Full Text PDFThe multifactorial nature of Parkinson's disease necessitates the development of new chemical entities with inherent ability to address key pathogenic processes. To this end, two series of new symmetrical 1,2- and 1,4-bis(2-aroyl/alkoylimino-5-(2-methoxy-2-oxoethylidene)-4-oxo-thiazolidin-3-yl)benzene derivatives (3a-g and 5a-e) were synthesized in good yields by the cyclization of 1,2- and 1,4-bis(N'-substituted thioureido)benzene intermediates with dimethyl acetylenedicarboxylate (DMAD) in methanol at ambient temperature. The bis-iminothiazolidinone compounds were investigated in vitro for their inhibition of monoamine oxidase (MAO-A & MAO-B) enzymes with the aim to identify new and distinct pharmacophores for the treatment of neurodegenerative disorders like Parkinson's disease.
View Article and Find Full Text PDFThe development of a multimaterial extrusion bioprinting platform is reported. This platform is capable of depositing multiple coded bioinks in a continuous manner with fast and smooth switching among different reservoirs for rapid fabrication of complex constructs, through digitally controlled extrusion of bioinks from a single printhead consisting of bundled capillaries synergized with programmed movement of the motorized stage.
View Article and Find Full Text PDFThe field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues.
View Article and Find Full Text PDFConventional blood vessel-on-a-chip models are typically based on microchannel-like structures enclosed within bulk elastomers such as polydimethylsiloxane (PDMS). However, these bulk vascular models largely function as individual platforms and exhibit limited flexibility particularly when used in conjunction with other organ modules. Oftentimes, lengthy connectors and/or tubes are still needed to interface multiple chips, resulting in a large waste volume counterintuitive to the miniaturized nature of organs-on-chips.
View Article and Find Full Text PDFUrease is an important enzyme which breaks urea into ammonia and carbon dioxide during metabolic processes. However, an elevated activity of urease causes various complications of clinical importance. The inhibition of urease activity with small molecules as inhibitors is an effective strategy for therapeutic intervention.
View Article and Find Full Text PDF