Background: Patient-generated health data (PGHD) captured via smart devices or digital health technologies can reflect an individual health journey. PGHD enables tracking and monitoring of personal health conditions, symptoms, and medications out of the clinic, which is crucial for self-care and shared clinical decisions. In addition to self-reported measures and structured PGHD (eg, self-screening, sensor-based biometric data), free-text and unstructured PGHD (eg, patient care note, medical diary) can provide a broader view of a patient's journey and health condition.
View Article and Find Full Text PDFBackground: Parental justice involvement (eg, prison, jail, parole, or probation) is an unfortunately common and disruptive household adversity for many US youths, disproportionately affecting families of color and rural families. Data on this adversity has not been captured routinely in pediatric health care settings, and if it is, it is not discrete nor able to be readily analyzed for purposes of research.
Objective: In this study, we outline our process training a state-of-the-art natural language processing model using unstructured clinician notes of one large pediatric health system to identify patients who have experienced a justice-involved parent.
Objectives: Patient-generated health data (PGHD) are important for tracking and monitoring out of clinic health events and supporting shared clinical decisions. Unstructured text as PGHD (eg, medical diary notes and transcriptions) may encapsulate rich information through narratives which can be critical to better understand a patient's condition. We propose a natural language processing (NLP) supported data synthesis pipeline for unstructured PGHD, focusing on children with special healthcare needs (CSHCN), and demonstrate it with a case study on cystic fibrosis (CF).
View Article and Find Full Text PDF