Burst Image Restoration aims to reconstruct a high-quality image by efficiently combining complementary inter-frame information. However, it is quite challenging since individual burst images often have inter-frame misalignments that usually lead to ghosting and zipper artifacts. To mitigate this, we develop a novel approach for burst image processing named BIPNet that focuses solely on the information exchange between burst frames and filter-out the inherent degradations while preserving and enhancing the actual scene details.
View Article and Find Full Text PDFFollowing unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as de facto operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
February 2023
Given a degraded input image, image restoration aims to recover the missing high-quality image content. Numerous applications demand effective image restoration, e.g.
View Article and Find Full Text PDFGamut mapping is the problem of transforming the colors of image or video content so as to fully exploit the color palette of the display device where the content will be shown, while preserving the artistic intent of the original content's creator. In particular, in the cinema industry, the rapid advancement in display technologies has created a pressing need to develop automatic and fast gamut mapping algorithms. In this article, we propose a novel framework that is based on vision science models, performs both gamut reduction and gamut extension, is of low computational complexity, produces results that are free from artifacts and outperforms state-of-the-art methods according to psychophysical tests.
View Article and Find Full Text PDFEmerging display technologies are able to produce images with a much wider color gamut than those of conventional distribution gamuts for cinema and TV, creating an opportunity for the development of gamut extension algorithms (GEAs) that exploit the full color potential of these new systems. In this paper, we present a novel GEA, implemented as a PDE-based optimization procedure related to visual perception models, that performs gamut extension (GE) by taking into account the analysis of distortions in hue, chroma, and saturation. User studies performed using a digital cinema projector under cinematic (low ambient light, large screen) conditions show that the proposed algorithm outperforms the state of the art, producing gamut extended images that are perceptually more faithful to the wide-gamut ground truth, as well as free of color artifacts and hue shifts.
View Article and Find Full Text PDF