Comput Biol Chem
December 2024
Type II secretion System has been increasingly recognized as a key driver of virulence in many pathogenic bacteria including Achromobacter xylosoxidans. ATPase GspE is the powerhouse of the T2SS. It powers the entire secretion process by binding with ATP and hydrolyzing it.
View Article and Find Full Text PDFAntibiotics resistance by bacterial pathogens is a major concern to public health worldwide resulting in high health care costs and rising mortality. Subtractive proteomics prioritized D-alanyl-D-alanine carboxypeptidas (DacB) enzyme from Enterobacter cloacae ATCC 13047 as a potential candidate for drugs designing to block pathogen cell wall biosynthesis. Virtual screening of an antibacterial library against the target unraveled a hit compound (2-[(1-methylsulfonylpiperidin-3-yl)methyl]-6-(1H-pyrazol-4-yl) pyrazine) showing high affinity and stability with the target.
View Article and Find Full Text PDFProtein Tyrosine Phosphatase 1B (PTP1B), being negative regulator of insulin signaling pathways is considered as potential medicinal target. Selective and targeted inhibitors for PTP1B can impact the therapeutic options available to cure chronic illness such as diabetes. Significant research evidence including computational studies on the role of Zn in binding and inhibiting the catalytic pocket have been reported along with experimental exploration of zinc(II) complexes as potent inhibitors of the enzyme.
View Article and Find Full Text PDFAntibiotic resistance by bacterial pathogens against widely used β-lactam drugs is a major concern to public health worldwide, resulting in high healthcare cost. The present study aimed to extend previous research by investigating the potential activity of reported compounds against the β-lactamase protein. 74 compounds from computational screening reported in our previous study against β-lactamase CMY-10 were subjected to docking studies against blaCTX-M15.
View Article and Find Full Text PDFMarburg virus (MARV) has been a major concern since its first outbreak in 1967. Although the deadly BSL-4 pathogen has been reported in few individuals with sporadic outbreaks following 1967, its rarity commensurate the degree of disease severity. The virus has been known to cause extreme hemorrhagic fever presenting flu-like symptoms (as implicated in COVID-19) with a 90% case fatality rate (CFR).
View Article and Find Full Text PDFThe bacterial transcriptional factor OxyR, a peroxide sensor conserved in bacterial virulence pathways, has the capability to exhibit exceptional reactivity toward hydrogen peroxide (HO). HO is essential for oxidizing cysteine thiolates to maintain cellular redox homeostasis and is dispensable for bacterial growth that can potentially mitigate drug resistance, thus underlining OxyR as a valuable target. We employ quantum mechanics/molecular mechanics (QM/MM) umbrella sampling (US) simulations at the DFTB3/MM level of theory and propose a reaction mechanism with four potential covalent inhibitors.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors (PPARs) are nuclear receptors, and their activation has been proven to treat mild liver fibrosis, reduce steatosis, inflammation, and the extrahepatic effects of chronic liver disease. Considering the significance of the PPARs, it is targeted for the treatment of Non-Alcoholic Steatohepatitis (NASH), for which currently there is no FDA-approved drug. Lanifibranor is a next-generation highly potential indole sulfonamide derivative that is presently in clinical trial phase III as an anti-NASH drug which fully activates PPARα and PPARδ and partially activates PPARγ.
View Article and Find Full Text PDFOrientia tsutsugamushi, the causative agent of scrub typhus has been found resistant to various classes of antibiotics such as penicillins, gentamycin and cephalosporins. Review of current literature suggests that the prevalence of scrub typhus has increased globally. Therefore, the current study has aimed at exploring the genome of O.
View Article and Find Full Text PDFAmid emerging drug resistance to metal inhibitors, high toxicity, and onerous drug delivery procedures, the computational design of alternate formulations encompassing functional metal-containing compounds greatly relies on large-scale atomistic simulations. Simulations particularly with Au(I), Ag, Bi(V), and Sb(V) pose a major challenge to elucidate their molecular mechanism due to the absence of force field parameters. This study thus quantum mechanically derives force field parameters of Bi(V) as an extension of the previous experimental study conducted on heteroleptic triorganobismuth(V) biscarboxylates of type [BiR(OCR')].
View Article and Find Full Text PDFRoxadustat, a small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase domain 2 (HIF-PHD2) has been recently overruled by the American Food and Drug Administration (FDA) in Phase 3 clinical trials. This study provides insights into the dynamics of Roxadustat with PHD2 and proposes two FDA-approved drugs; Pemetrexed and Valrubicin to treat chronic kidney disease (CKD). Role of chemical scaffolds such as synthetic pyrimidine-based antifolate is found critical for PHD2 inhibitory activity, which is concurrent with the experimental findings for stimulating Endogenous erythropoietin (EPO) gene expression.
View Article and Find Full Text PDFJanus kinases (JAKs) are involved in numerous cellular signaling processes related to immune cell functions. JAK2 and JAK3 are associated with the pathogenesis of leukemia and common lymphoid-derived illnesses. JAK2/3 inhibitors could reduce the risk of various diseases by targeting this pathway.
View Article and Find Full Text PDFCancer remains the leading cause of mortality and morbidity in the world, with 19.3 million new diagnoses and 10.1 million deaths in 2020.
View Article and Find Full Text PDFBackground: Signal transducers and activators of the transcription (STAT) family is composed of seven structurally similar and highly conserved members, including STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6. The STAT3 signaling cascade is activated by upstream kinase signals and undergoes phosphorylation, homo-dimerization, nuclear translocation, and DNA binding, resulting in the expression of target genes involved in tumor cell proliferation, metastasis, angiogenesis, and immune editing. STAT3 hyperactivation has been documented in a number of tumors, including head and neck, breast, lung, liver, kidney, prostate, pancreas cancer, multiple myeloma, and acute myeloid leukemia.
View Article and Find Full Text PDFThis study aims to investigate the binding potential of chemical compounds of Senna in comparison with the experimentally tested active phytochemicals against SARS-CoV-2 protein targets to assist in prevention of infection by exploring multiple treatment options. The entire set of phytochemicals from both the groups were subjected to advanced computational analysis that explored functional molecular descriptors from a set of known medicinal-based active therapeutics followed by MD simulations on multiple SARS-CoV-2 target proteins. Our findings manifest the importance of hydrophobic substituents in chemical structures of potential inhibitors through cross-validation with the FDA-approved anti-3CLpro drugs.
View Article and Find Full Text PDFGLS1 enzymes (Glutaminase C (GAC) and kidney-type Glutaminase (KGA)) are gaining prominence as a target for tumor treatment including lung, breast, kidney, prostate, and colorectal. To date, several medicinal chemistry studies are being conducted to develop new and effective inhibitors against GLS1 enzymes. Telaglenastat, a drug that targets the allosteric site of GLS1, has undergone clinical trials for the first time for the therapy of solid tumors and hematological malignancies.
View Article and Find Full Text PDFIn a quest to discover new formulations for the treatment of various parasitic diseases, a series of heteroleptic triorganobismuth(V) biscarboxylates of type [BiR(OCR')], where R=CH for 1-4 and p-CHCH for 5-8, were synthesized, characterized and evaluated for their biological potential against L. tropica. All the synthesized complexes were fully characterized by elemental analysis, FT-IR, multinuclear (H and C) NMR spectroscopy and X-ray crystallography.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
October 2022
The superbug Acinetobacter baumannii is an increasingly prevalent pathogen of the intensive care units where its treatment is challenging. The identification of newer drug targets and the development of propitious therapeutics against this pathogen is of utmost importance. A drug target, cell division enzyme (FtsZ), involved in A.
View Article and Find Full Text PDFβ-lactam antibiotics are the most widely used antimicrobial agents since the discovery of benzylpenicillin in the 1920s. Unfortunately, these life-saving antibiotics are vulnerable to inactivation by continuously evolving β-lactamase enzymes that are primary resistance determinants in multi-drug resistant pathogens. The current study exploits the strategy of combination therapeutics and aims at identifying novel β-lactamase inhibitors that can inactivate the β-lactamase enzyme of the pathogen while allowing the β-lactam antibiotic to act against its penicillin-binding protein target.
View Article and Find Full Text PDFBacterial FabH enzyme is a broad-spectrum antimicrobial target and can be used in the design of novel antibiotics. This study reports chemical synthesis of thiazole based amine compounds as FabH inhibitors, followed by biological evaluation, and computational drug designing analysis with ultimate objective to guide further biological optimization of the identified hits. The compounds were synthesized through Pd-PEPPSI catalyzed cross coupling strategy for the Buchwald-Hartwig amination of thiazole-substituted aryl bromide.
View Article and Find Full Text PDFThe COVID-19 pandemic caused by SARS-CoV-2 is a public health emergency of international concern and thus calling for the development of effective and safe therapeutics and prophylactics particularly a vaccine to protect against the infection. SARS-CoV-2 spike glycoprotein is an attractive candidate for a vaccine, antibodies, and inhibitors development because of the many roles it plays in attachment, fusion and entry into the host cell. In the present investigation, we characterized the SARS-CoV-2 spike glycoprotein by immunoinformatics techniques to put forward potential B and T cell epitopes, followed by the use of epitopes in construction of a multi-epitope peptide vaccine construct (MEPVC).
View Article and Find Full Text PDFThe pathogen Legionella longbeachae is a causative agent of legionellosis. The antibiotic resistance is the major problem of this modern world. Thus, selective pressure warrants the need for identification of newer drug target.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90) performs functions in cellular activities together with other signaling pathways. Hsp90 is evolutionarily conserved and universally articulated as a human cancer-causing agent involved in lung cancer and breast cancer followed by colon and rectum cancers. It has emerged as an effective drug candidate, and inhibition may affect several signaling pathways associated with cancer spread.
View Article and Find Full Text PDFThe emergence and rapid expansion of the coronavirus disease (COVID-19) require the development of effective countermeasures especially a vaccine to provide active acquired immunity against the virus. This study presented a comprehensive vaccinomics approach applied to the complete protein data published so far in the National Center for Biotechnological Information (NCBI) coronavirus data hub. We identified non-structural protein 8 (Nsp8), 3C-like proteinase, and spike glycoprotein as potential targets for immune responses to COVID-19.
View Article and Find Full Text PDFThe emergence of carbapenem-resistant Klebsiella Pneumoniae had been reported previously, which needs rapid attention. Currently, Pittsburgh University Hospital reported a new strain of carbapenem-resistant Klebsiella pneumoniae that was co-producing OXA-232 and NDM-1 named as PittNDM01. This strain is resistant to almost all beta-lactam antibiotics such as Carbapenem as well as to fluoroquinolones and aminoglycosides.
View Article and Find Full Text PDF