Background: Whole genome sequencing using the long-read Oxford Nanopore Technologies (ONT) MinION sequencer provides a cost-effective option for structural variant (SV) detection in clinical applications. Despite the advantage of using long reads, however, accurate SV calling and phasing are still challenging.
Results: We introduce Duet, an SV detection tool optimized for SV calling and phasing using ONT data.
Accurate identification of genetic variants from family child-mother-father trio sequencing data is important in genomics. However, state-of-the-art approaches treat variant calling from trios as three independent tasks, which limits their calling accuracy for Nanopore long-read sequencing data. For better trio variant calling, we introduce Clair3-Trio, the first variant caller tailored for family trio data from Nanopore long-reads.
View Article and Find Full Text PDFWhile dromedaries are the immediate animal source of Middle East Respiratory Syndrome (MERS) epidemic, viruses related to MERS coronavirus (MERS-CoV) have also been found in bats as well as hedgehogs. To elucidate the evolution of MERS-CoV-related viruses and their interspecies transmission pathway, samples were collected from different mammals in China. A novel coronavirus related to MERS-CoV, hedgehog coronavirus HKU31 (-HedCoV HKU31), was identified from two Amur hedgehogs.
View Article and Find Full Text PDFPrevious findings of Middle East Respiratory Syndrome coronavirus (MERS-CoV)-related viruses in bats, and the ability of Tylonycteris-BatCoV HKU4 spike protein to utilize MERS-CoV receptor, human dipeptidyl peptidase 4 hDPP4, suggest a bat ancestral origin of MERS-CoV. We developed 12 primary bat cell lines from seven bat species, including Tylonycteris pachypus, Pipistrellus abramus and Rhinolophus sinicus (hosts of Tylonycteris-BatCoV HKU4, Pipistrellus-BatCoV HKU5, and SARS-related-CoV respectively), and tested their susceptibilities to MERS-CoVs, SARS-CoV, and human coronavirus 229E (HCoV-229E). Five cell lines, including P.
View Article and Find Full Text PDFThe emergence of Middle East respiratory syndrome showed once again that coronaviruses (CoVs) in animals are potential source for epidemics in humans. To explore the diversity of deltacoronaviruses in animals in the Middle East, we tested fecal samples from 1,356 mammals and birds in Dubai, The United Arab Emirates. Four novel deltacoronaviruses were detected from eight birds of four species by reverse transcription-PCR (RT-PCR): FalCoV UAE-HKU27 from a falcon, HouCoV UAE-HKU28 from a houbara bustard, PiCoV UAE-HKU29 from a pigeon, and QuaCoV UAE-HKU30 from five quails.
View Article and Find Full Text PDFAlthough bats are known to harbor Middle East Respiratory Syndrome coronavirus (MERS-CoV)-related viruses, the role of bats in the evolutionary origin and pathway remains obscure. We identified a novel MERS-CoV-related betacoronavirus, Hp-BatCoV HKU25, from Chinese pipistrelle bats. Although it is closely related to MERS-CoV in most genome regions, its spike protein occupies a phylogenetic position between that of Ty-BatCoV HKU4 and Pi-BatCoV HKU5.
View Article and Find Full Text PDFCompared to the enormous species diversity of bats, relatively few parvoviruses have been reported. We detected diverse and potentially novel parvoviruses from bats in Hong Kong and mainland China. Parvoviruses belonging to , and were detected in alimentary, liver and spleen samples from 16 different chiropteran species of five families by PCR.
View Article and Find Full Text PDFWe report the discovery of a novel bocaparvovirus, bat bocaparvovirus (BtBoV), in one spleen, four respiratory and 61 alimentary samples from bats of six different species belonging to three families, Hipposideridae, Rhinolophidae and Vespertilionidae. BtBoV showed a higher detection rate in alimentary samples of Rhinolophus sinicus (5.7 %) than those of other bat species (0.
View Article and Find Full Text PDFUnlabelled: Despite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-related Rhinolophus sinicus bat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs.
View Article and Find Full Text PDF