Publications by authors named "Syed Sayeed Ahmad"

The recent resurgence of traditional medicines, driven by a renewed interest in the medicinal use of plant extracts, has garnered significant scientific attention for their therapeutic efficacy in treating a wide range of diseases. Glycyrrhiza species, commonly known as licorice, are widely recognized both as herbal remedies and as natural sweeteners. Among these, Glycyrrhiza uralensis stands out for its exceptional therapeutic potential, particularly in enhancing muscle regeneration, slowing muscle aging, and promoting skeletal muscle myogenesis.

View Article and Find Full Text PDF

Amentoflavone (AF) is a biflavonoid compound found in many plants. In this study, we first demonstrate that AF has a potent antiviral effect against the influenza virus via the inhibition of viral attachment and virucidal effects. The anti-influenza-viral effect of AF was evaluated using green fluorescent protein-tagged Influenza A virus (IAV) with fluorescent microscopy and flow cytometry analysis.

View Article and Find Full Text PDF

Skeletal muscle (SM) contains a diverse population of muscle stem (or satellite) cells, which are essential for the maintenance of muscle tissue and positively regulated by prostaglandin E2 (PGE2). However, in aged SM, PGE2 levels are reduced due to increased prostaglandin catabolism by 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a negative regulator of SM tissue repair and regeneration. Screening of a library of 80,617 natural compounds in the ZINC database against 15-PGDH was conducted from PyRx.

View Article and Find Full Text PDF

Skeletal muscle (SM) mass and strength maintenance are important requirements for human well-being. SM regeneration to repair minor injuries depends upon the myogenic activities of muscle satellite (stem) cells. However, losses of regenerative properties following volumetric muscle loss or severe trauma or due to congenital muscular abnormalities are not self-restorable, and thus, these conditions have major healthcare implications and pose clinical challenges.

View Article and Find Full Text PDF

Skeletal muscle (SM) is a highly plastic and dynamic tissue of the body and is largely responsible for body maintenance. SM is primarily responsible for body balance, movement, postural support, thermogenesis, and blood glucose homeostasis. SM regeneration depends on the activation of muscle satellite (stem) cells (MSCs) under the regulation of several muscle regulatory factors that regulate myogenesis.

View Article and Find Full Text PDF

Cultured meat (CM) is an alternative protein food and is produced by cultivating muscle satellite (stem) cells (MSCs) derived from livestock animals (bovine, chickens, and porcine) through myogenesis leading to generate muscle mass. Myostatin (MSTN) is well well-known negative regulator of myogenesis, and in the present study, screening of natural compounds was performed to identify MSTN inhibitors. Interestingly, quercetin was found to inhibit MSTN (binding energy -7.

View Article and Find Full Text PDF

Skeletal muscle (SM) is the largest organ of the body and is largely responsible for the metabolism required to maintain body functions. Furthermore, the maintenance of SM is dependent on the activation of muscle satellite (stem) cells (MSCs) and the subsequent proliferation and fusion of differentiating myoblasts into mature myofibers (myogenesis). Natural compounds are being used as therapeutic options to promote SM regeneration during aging, muscle atrophy, sarcopenia, cachexia, or obesity.

View Article and Find Full Text PDF

Ginseng is usually consumed as a daily food supplement to improve health and has been shown to benefit skeletal muscle, improve glucose metabolism, and ameliorate muscle-wasting conditions, cardiovascular diseases, stroke, and the effects of aging and cancers. Ginseng has also been reported to help maintain bone strength and liver (digestion, metabolism, detoxification, and protein synthesis) and kidney functions. In addition, ginseng is often used to treat age-associated neurodegenerative disorders, and ginseng and ginseng-derived natural products are popular natural remedies for diseases such as diabetes, obesity, oxidative stress, and inflammation, as well as fungal, bacterial, and viral infections.

View Article and Find Full Text PDF

The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes.

View Article and Find Full Text PDF

Skeletal muscle (SM) plays a vital role in energy and glucose metabolism by regulating insulin sensitivity, glucose uptake, and blood glucose homeostasis. Impaired SM metabolism is strongly linked to several diseases, particularly type 2 diabetes (T2D). Insulin resistance in SM may result from the impaired activities of insulin receptor tyrosine kinase, insulin receptor substrate 1, phosphoinositide 3-kinase, and AKT pathways.

View Article and Find Full Text PDF

Cultured meat is a potential sustainable food generated by the myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones.

View Article and Find Full Text PDF

The current article deals with the in-silico along with enzyme kinetics approach to search for a prominent AChE enzyme inhibitor among the known natural compounds. The computational tools were involved for this purpose and eventual vincamine, a monoterpenoid indole alkaloid, was selected based on several parameters, including free energy of binding (-10.77 kcal/mol) and ADME parameter.

View Article and Find Full Text PDF

Immunoglobulin-like cell adhesion molecule (IgLON4) is a glycosylphosphatidylinositol-anchored membrane protein that has been associated with neuronal growth and connectivity, and its deficiency has been linked to increased fat mass and low muscle mass. Adequate information on IgLON4 is lacking, especially in the context of skeletal muscle. In this study, we report that IgLON4 is profusely expressed in mouse muscles and is intensely localized on the cell membrane.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a growing global public health issue, and dipeptidyl peptidase-4 (DPP-4) is a potential therapeutic target in T2DM. Several synthetic anti-DPP-4 medications can be used to treat T2DM. However, because of adverse effects, there is an unmet demand for the development of safe and effective medications.

View Article and Find Full Text PDF

Background: The SARS-CoV-2 coronavirus (COVID-19) has raised innumerable global concerns, and few effective treatment strategies have yet been permitted by the FDA to lighten the disease burden. SARS-CoV-2 3C-like proteinase (3CLP) is a crucial protease and plays a key role in the viral life cycle, as it controls replication, and thus, it is viewed as a target for drug design.

Methods: In this study, we performed structure-based virtual screening of FDA drugs approved during 2015-2019 (a total of 220 drugs) for interaction with the active site of 3CLP (PDB ID 6LU7) using AutoDock 4.

View Article and Find Full Text PDF

Myostatin (MSTN) is a well-reported negative regulator of muscle growth and a member of the transforming growth factor (TGF) family. MSTN has important functions in skeletal muscle (SM), and its crucial involvement in several disorders has made it an important therapeutic target. Several strategies based on the use of natural compounds to inhibitory peptides are being used to inhibit the activity of MSTN.

View Article and Find Full Text PDF

Alzheimer's disease is a chronic neurodegenerative ailment and the most familiar type of dementia in the older population with no effective cure to date. It is characterized by a decrease in memory, associated with the mutilation of cholinergic neurotransmission. Presently, acetylcholinesterase inhibitors have emerged as the most endorsed pharmacological medications for the symptomatic treatment of mild to moderate Alzheimer's disease.

View Article and Find Full Text PDF

Myostatin (MSTN), a negative regulator of muscle mass, is reported to be increased in conditions linked with muscle atrophy, sarcopenia, and other muscle-related diseases. Most pharmacologic approaches that treat muscle disorders are ineffective, emphasizing the emergence of MSTN inhibition. In this study, we used computational screening to uncover natural small bioactive inhibitors from the Traditional Chinese Medicine database (~38,000 compounds) for the MSTN protein.

View Article and Find Full Text PDF

Cancer cachexia is a condition marked by functional, metabolic, and immunological dysfunctions associated with skeletal muscle (SM) atrophy, adipose tissue loss, fat reduction, systemic inflammation, and anorexia. Generally, the condition is caused by a variety of mediators produced by cancer cells and cells in tumor microenvironments. Myostatin and activin signaling, IGF-1/PI3K/AKT signaling, and JAK-STAT signaling are known to play roles in cachexia, and thus, these pathways are considered potential therapeutic targets.

View Article and Find Full Text PDF

The use of peptides as drugs has progressed over time and continues to evolve as treatment paradigms change and new drugs are developed. Myostatin (MSTN) inhibition therapy has shown great promise for the treatment of muscle wasting diseases. Here, we report the MSTN-derived novel peptides MIF1 (10-mer) and MIF2 (10-mer) not only enhance myogenesis by inhibiting MSTN and inducing myogenic-related markers but also reduce adipogenic proliferation and differentiation by suppressing the expression of adipogenic markers.

View Article and Find Full Text PDF

Cultured meat production is an evolving method of producing animal meat using tissue engineering techniques. Cells, chemical factors, and suitable biomaterials that serve as scaffolds are all essential for the cultivation of muscle tissue. Scaffolding is essential for the development of organized meat products resembling steaks because it provides the mechanical stability needed by cells to attach, differentiate, and mature.

View Article and Find Full Text PDF

The world's population continues to increase, meaning we require more consistent protein supply to meet demand. Despite the availability of plant-based protein alternatives, animal meat remains a popular, high-quality protein source. Research studies have focused on cultured meat (meat grown in vitro) as a safe and more efficient alternative to traditional meat.

View Article and Find Full Text PDF

Autophagy is an essential cellular process that involves the transport of cytoplasmic content in double-membraned vesicles to lysosomes for degradation. Neurons do not undergo cytokinesis, and thus, the cell division process cannot reduce levels of unnecessary proteins. The primary cause of neurodegenerative disorders (NDs) is the abnormal deposition of proteins inside neuronal cells, and this could be averted by autophagic degradation.

View Article and Find Full Text PDF

The skeletal muscle (SM) is the largest organ in the body and has tremendous regenerative power due to its myogenic stem cell population. Myostatin (MSTN), a protein produced by SM, is released into the bloodstream and is responsible for age-related reduced muscle fiber development. The objective of this study was to identify the natural compounds that inhibit MSTN with therapeutic potential for the management of age-related disorders, specifically muscle atrophy and sarcopenia.

View Article and Find Full Text PDF

The objective of this study was to investigate fibromodulin (FMOD) and myostatin (MSTN) gene expressions during skeletal muscle aging and to understand their involvements in this process. The expressions of genes related to muscle aging (Atrogin 1 and Glb1), diabetes (RAGE and CD163), and lipid accumulation (CD36 and PPARγ) and those of FMOD and MSTN were examined in CTX-injected, aged, MSTN, and high-fat diet (HFD) mice and in C2C12 myoblasts treated with ceramide or grown under adipogenic conditions. Results from CTX-injected mice and gene knockdown experiments in C2C12 cells suggested the involvement of FMOD during muscle regeneration and myoblast proliferation and differentiation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontl4c8l0vubhadrlbsskpl818ts8m2v8v): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once