Transcription factors (TFs) play a significant role in signal transduction networks spanning the perception of a stress signal and the expression of corresponding stress-responsive genes. TFs are multi-functional proteins that may simultaneously control numerous pathways during stresses in plants-this makes them powerful tools for the manipulation of regulatory and stress-responsive pathways. In recent years, the structure-function relationships of numerous plant TFs involved in drought and associated stresses have been defined, which prompted devising practical strategies for engineering plants with enhanced stress tolerance.
View Article and Find Full Text PDFNetworks of transcription factors regulate diverse physiological processes in plants to ensure that plants respond to abiotic stresses rapidly and efficiently. In this study, expression of two DREB/CBF genes, TaDREB3 and TaCBF5L, was modulated in transgenic wheat and barley, by using stress-responsive promoters HDZI-3 and HDZI-4. The promoters were derived from the durum wheat genes encoding the γ-clade TFs of the HD-Zip class I subfamily.
View Article and Find Full Text PDFThe understanding of roles of bZIP factors in biological processes during plant development and under abiotic stresses requires the detailed mechanistic knowledge of behaviour of TFs. Basic leucine zipper (bZIP) transcription factors (TFs) play key roles in the regulation of grain development and plant responses to abiotic stresses. We investigated the role and molecular mechanisms of function of the TabZIP2 gene isolated from drought-stressed wheat plants.
View Article and Find Full Text PDFPlant growth and productivity are greatly affected by abiotic stresses such as drought, salinity, and temperature. Drought stress is one of the major limitations to crop productivity worldwide due to its multigene nature, making the production of transgenic crops a challenging prospect. To develop crop plant with enhanced tolerance of drought stress, a basic understanding of physiological, biochemical, and gene regulatory networks is essential.
View Article and Find Full Text PDFPolyamines (PAs) are ubiquitous biogenic amines that have been implicated in diverse cellular functions in widely distributed organisms. In plants, mutant and transgenic plants with altered activity pointed to their involvement with different abiotic and biotic stresses. Furthermore, microarray, transcriptomic and proteomic approaches have elucidated key functions of different PAs in signaling networks in plants subjected to abiotic and biotic stresses, however the exact molecular mechanism remains enigmatic.
View Article and Find Full Text PDF