Euchromatic histone lysine methyltransferase-2, also known as G9a, is a ubiquitously expressed SET domain-containing histone lysine methyltransferase linked with both facultative and constitutive heterochromatin formation and transcriptional repression. It is an essential developmental gene and reported to play role in embryonic development, establishment of proviral silencing in ES cells, tumor cell growth, metastasis, T-cell immune response, cocaine induced neural plasticity and cognition and adaptive behavior. It is mainly responsible for carrying out mono, di and tri methylation of histone H3K9 in euchromatin.
View Article and Find Full Text PDFChromatin remodelers are complexes able to both alter histone-DNA interactions and to mobilize nucleosomes. The mechanism of their action and the conformation of remodeled nucleosomes remain a matter of debates. In this work we compared the type and structure of the products of nucleosome remodeling by SWI/SNF and ACF complexes using high-resolution microscopy combined with novel biochemical approaches.
View Article and Find Full Text PDFPhosphodiesterases are promising targets for pharmacological intervention against various diseases. There are already inhibitors of PDE3, PDE4 and PDE5 as approved drugs. However there is an unmet need to discover new chemical scaffolds as PDE inhibitors.
View Article and Find Full Text PDFOur previous discovery of series of pyrazolopyrimidinone based PDE5 inhibitors led to find potent leads but with low aqueous solubility and poor bioavailability, and low selectivity. Now, a new series of same pyrazolopyrimidinone scaffold is designed, synthesized and evaluated for its PDE5 inhibitory potential. In this study, some of the molecules are found more potent and selective PDE5 inhibitors in vitro than sildenafil.
View Article and Find Full Text PDFSaudi J Kidney Dis Transpl
October 2019
Urinary tract infection is the most common bacterial infection occurring in renal transplant recipients and is associated with significant morbidity. The etiology and site of origin of hematuria in the transplant recipient is similar to that of the general population. Aeromonas species have been found to cause infection in immunocompromised hosts including patients of chronic kidney disease.
View Article and Find Full Text PDFIGF1R is a ubiquitous receptor tyrosine kinase that plays critical roles in cell proliferation, growth and survival. Clinical studies have demonstrated upregulation of IGF1R mediated signaling in a number of malignancies including colon, breast, and lung cancers. Overexpression of the IGF1R in these malignancies is associated with a poor prognosis and overall survival.
View Article and Find Full Text PDFCENP-A is a histone variant, which replaces histone H3 at centromeres and confers unique properties to centromeric chromatin. The crystal structure of CENP-A nucleosome suggests flexible nucleosomal DNA ends, but their dynamics in solution remains elusive and their implication in centromere function is unknown. Using electron cryo-microscopy, we determined the dynamic solution properties of the CENP-A nucleosome.
View Article and Find Full Text PDFβ-Catenin, the central molecule of canonical Wnt signaling pathway, has multiple binding partners and performs many roles in the cell. Apart from being a transcriptional activator, β-catenin acts as a crucial effector component of cadherin/catenin complex to physically interact with actin cytoskeleton along with α-catenin and E-cadherin for regulating cell-cell adhesion. Here, we have generated a library of β-catenin point and deletion mutants to delineate regions within β-catenin that are important for α-catenin-β-catenin interaction, nuclear localization, and transcriptional activity of β-catenin.
View Article and Find Full Text PDFBackground: The substances abuse has become one of the major public health problems of present society. Recently there has been an increase in the incidence of substance abuse including that of opioids throughout the world. The proper assessment of the current trends and pattern of opioid abuse can be helpful in more effective intervention of this menace.
View Article and Find Full Text PDFCyclic guanosine monophosphate (cGMP) specific phosphodiesterase type-5 (PDE5), a clinically proven target to treat erectile dysfunction and diseases associated with lower cGMP levels in humans, is present in corpus cavernosum, heart, lung, platelets, prostate, urethra, bladder, liver, brain, and stomach. Sildenafil, vardenafil, tadalafil and avanafil are FDA approved drugs in market as PDE5 inhibitors for treating erectile dysfunction. In the present study a lead molecule 4-ethoxy-N-(6-hydroxyhexyl)-3-(1-methyl-7-oxo-3-propyl-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-5-yl)benzenesulfonamide, that is, compound-4a, an analog of pyrazolopyrimidinone scaffold has been identified as selective PDE5 inhibitor.
View Article and Find Full Text PDFObjectives: Prevalence of opioid addiction has alarmingly increased over the recent years. In South Asian region alone there are more than 10 million opioid abusers amounting to 2% of world population. Detoxification remains to be the first step for the successful treatment of opioid addiction.
View Article and Find Full Text PDFThe interaction of histone H1 with linker DNA results in the formation of the nucleosomal stem structure, with considerable influence on chromatin organization. In a recent paper [Syed,S.H.
View Article and Find Full Text PDFLinker histone H1 plays an essential role in chromatin organization. Proper deposition of linker histone H1 as well as its removal is essential for chromatin dynamics and function. Linker histone chaperones perform this important task during chromatin assembly and other DNA-templated phenomena in the cell.
View Article and Find Full Text PDFHistone variants within the H2A family show high divergences in their C-terminal regions. In this work, we have studied how these divergences and in particular, how a part of the H2A COOH-terminus, the docking domain, is implicated in both structural and functional properties of the nucleosome. Using biochemical methods in combination with Atomic Force Microscopy and Electron Cryo-Microscopy, we show that the H2A-docking domain is a key structural feature within the nucleosome.
View Article and Find Full Text PDFDespite the key role of the linker histone H1 in chromatin structure and dynamics, its location and interactions with nucleosomal DNA have not been elucidated. In this work we have used a combination of electron cryomicroscopy, hydroxyl radical footprinting, and nanoscale modeling to analyze the structure of precisely positioned mono-, di-, and trinucleosomes containing physiologically assembled full-length histone H1 or truncated mutants of this protein. Single-base resolution *OH footprinting shows that the globular domain of histone H1 (GH1) interacts with the DNA minor groove located at the center of the nucleosome and contacts a 10-bp region of DNA localized symmetrically with respect to the nucleosomal dyad.
View Article and Find Full Text PDFChromatin remodelers are sophisticated nano-machines that are able to alter histone-DNA interactions and to mobilize nucleosomes. Neither the mechanism of their action nor the conformation of the remodeled nucleosomes are, however, yet well understood. We have studied the mechanism of Remodels Structure of Chromatin (RSC)-nucleosome mobilization by using high-resolution microscopy and biochemical techniques.
View Article and Find Full Text PDFIn this work we have studied the properties of the novel mouse histone variant H2AL2. H2AL2 was used to reconstitute nucleosomes and the structural and functional properties of these particles were studied by a combination of biochemical approaches, atomic force microscopy (AFM) and electron cryo-microscopy. DNase I and hydroxyl radical footprinting as well as micrococcal and exonuclease III digestion demonstrated an altered structure of the H2AL2 nucleosomes all over the nucleosomal DNA length.
View Article and Find Full Text PDF