Publications by authors named "Syed N Barmaver"

Kinesin-3 KIF1A (UNC-104 in C. elegans) is the major axonal transporter of synaptic vesicles and mutations in this molecular motor are linked to KIF1A-associated neurological disorders (KAND), encompassing Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis and hereditary spastic paraplegia. UNC-104 binds to lipid bilayers of synaptic vesicles via its C-terminal PH (pleckstrin homology) domain.

View Article and Find Full Text PDF

Unlabelled: We have reported that the microtubule (MT) network in β cells attenuates this function by withdrawing insulin secretory granules (ISGs) away from the plasma membrane. Thus, high glucose-induced MT remodeling is required for robust glucose-stimulated insulin secretion (GSIS). We now show that α-cell secreted hormones, Gcg and/or Glp1, regulate the MT stability in β cells.

View Article and Find Full Text PDF

Neuronal growth, differentiation, homeostasis, viability, and injury response heavily rely on functional axonal transport (AT). Erroneous and disturbed AT may lead to accumulation of "disease proteins" such as tau, α-synuclein, or amyloid precursor protein causing various neurological disorders. Changes in AT often lead to observable behavioral consequences in C.

View Article and Find Full Text PDF

Mitochondria and intermediate filament (IF) accumulations often occur during imbalanced axonal transport leading to various types of neurological diseases. It is still poorly understood whether a link between neuronal IFs and mitochondrial mobility exist. In Caenorhabditis elegans, among the 11 cytoplasmic IF family proteins, IFB-1 is of particular interest as it is expressed in a subset of sensory neurons.

View Article and Find Full Text PDF

UNC-104 is the homolog of kinesin-3 KIF1A known for its fast shuffling of synaptic vesicle protein transport vesicles in axons. SYD-2 is the homolog of liprin-α in known to activate UNC-104; however, signals that trigger SYD-2 binding to the motor remain unknown. Because SYD-2 is a substrate of PTP-3/LAR PTPR, we speculate a role of this phosphatase in SYD-2-mediated motor activation.

View Article and Find Full Text PDF