We demonstrated a simple and scalable fabrication route of a nitrogen-doped reduced graphene oxide (N-rGO) photodetector on an 8 in. wafer-scale. The N-rGO was prepared through in situ plasma treatment in an acetylene-ammonia atmosphere to achieve an n-type semiconductor with substantial formation of quaternary-N substituted into the graphene lattice.
View Article and Find Full Text PDFIn this work, the piezoresistive effects of defective graphene used on a flexible pressure sensor are demonstrated. The graphene used was deposited at substrate temperatures of 750, 850 and 1000 °C using the hot-filament thermal chemical vapor deposition method in which the resultant graphene had different defect densities. Incorporation of the graphene as the sensing materials in sensor device showed that a linear variation in the resistance change with the applied gas pressure was obtained in the range of 0 to 50 kPa.
View Article and Find Full Text PDF