Publications by authors named "Syed Javaid Zaidi"

This study applied electrokinetic (EK) in situ soil remediation for perfluorooctanoic acid (PFOA) removal from kaolinite soil. The kaolinite soil was spiked with 10 mg/kg PFOA for the EK treatment using Sodium Cholate bio-surfactant coupled with Activated Carbon (AC) or iron-coated Activated Carbon (FeAC) permeable reactive barrier (PRB). The study also evaluated the impact of AC and FeAC PRBs' position on the EK process performance.

View Article and Find Full Text PDF

Water pollution remains a widespread problem, affecting the health and wellbeing of people around the globe. While current advancements in wastewater treatment and desalination show promise, there are still challenges that need to be overcome to make these technologies commercially viable. Nanotechnology plays a pivotal role in water purification and desalination processes today.

View Article and Find Full Text PDF

Cellulose that has been sourced from date palm leaves as a primary component was utilised. This cellulose served as the foundational material for the development of an aerogel composite. During this process, MXene (TiCT) played a pivotal role in enhancing the overall composition of the aerogel.

View Article and Find Full Text PDF

Polyacrylonitrile (PAN), with its unique chemical, electrical, mechanical, and thermal properties, has become a crucial acrylic polymer for the industry. This polymer has been widely used to fabricate ultrafiltration, nanofiltration, and reverse osmosis membranes for water treatment applications. However, it recently started to be used to fabricate thin-film composite (TFC) and fiber-based forward osmosis (FO) membranes at a lab scale.

View Article and Find Full Text PDF

The date palm (), a subtropical and tropical tree, included in the family () is one of the oldest cultivated plants of mankind. Date palm is a major agricultural product in the semi-arid and arid areas of the world, particularly in Arab countries. These trees generate high quantities of agricultural waste in the form of dry leaves, seeds, etc.

View Article and Find Full Text PDF

The date palm tree ( L.) is the oldest cultivated tree and is very commonly seen in the Arab countries. In recent times, researchers are working on the conversion of the plant-based biowaste into value-added products.

View Article and Find Full Text PDF

Worldwide water shortage and significant issues related to treatment of wastewater streams, mainly the water obtained during the recovery of oil and gas operations called produced water (PW), has enabled forward osmosis (FO) to progress and become advanced enough to effectively treat as well as retrieve water in order to be productively reused. Because of their exceptional permeability qualities, thin-film composite (TFC) membranes have gained increasing interest for use in FO separation processes. This research focused on developing a high water flux and less oil flux TFC membrane by incorporating sustainably developed cellulose nanocrystal (CNC) onto the polyamide (PA) layer of the TFC membrane.

View Article and Find Full Text PDF

Forward osmosis (FO) has become a promising membrane technology for desalination and water treatment due to its simplicity, low energy consumption, and low fouling tendency compared to pressure-driven membrane processes. Therefore, the advancement in FO process modelling was one of the main objectives of this paper. On the other hand, the membrane characteristics and draw solute type represent the main FO process factors determining its technical performance and economical perspectives.

View Article and Find Full Text PDF

Over the past several years, graphene quantum dots (GQDs) have been extensively studied in water treatment and sensing applications because of their exceptional structure-related properties, intrinsic inert carbon property, eco-friendly nature, etc. This work reported on the preparation of GQDs from the ethanolic extracts of eucalyptus tree leaves by a hydrothermal treatment technique. Different heat treatment times and temperatures were used during the hydrothermal treatment technique.

View Article and Find Full Text PDF

Forward osmosis (FO) technology for desalination has been extensively studied due to its immense benefits over conventionally used reverse osmosis. However, there are some challenges in this process such as a high reverse solute flux (RSF), low water flux, and poor chlorine resistance that must be properly addressed. These challenges in the FO process can be resolved through proper membrane design.

View Article and Find Full Text PDF

The major challenges in forward osmosis (FO) are low water flux, high specific reverse solute flux (SRSF), and membrane fouling. The present work addresses these problems by the incorporation of graphene quantum dots (GQDs) in the polyamide (PA) layer of thin-film composite (TFC) membranes, as well as by using an innovative polyethersulfone nanofiber support for the TFC membrane. The GQDs were prepared from eucalyptus leaves using a facile hydrothermal method that requires only deionized water, without the need for any organic solvents or reducing agents.

View Article and Find Full Text PDF

Incorporating polydopamine has become a viable method for membrane modification due to its universality and versatility. Fillers in their different categories have been confirmed as effective elements to improve the properties of membranes such as hydrophilicity, permeability, mechanical strength, and fouling resistance. Thus, this paper mainly highlights the recent studies that have been carried out using polydopamine and nanomaterial fillers simultaneously in modifying the performance of different membranes such as ultrafiltration, microfiltration, nanofiltration, reverse osmosis, and forward osmosis membranes according to the various modification methods.

View Article and Find Full Text PDF

Membrane-based desalination has proved to be the best solution for solving the water shortage issues globally. Membranes are extremely beneficial in the effective recovery of clean water from contaminated water sources, however, the durability as well as the separation efficiency of the membranes are restricted by the type of membrane materials/additives used in the preparation processes. Nanocellulose is one of the most promising green materials for nanocomposite preparation due to its biodegradability, renewability, abundance, easy modification, and exceptional mechanical properties.

View Article and Find Full Text PDF

At present, nanotechnology is a significant research area in different countries, owing to its immense ability along with its economic impact. Nanotechnology is the scientific study, development, manufacturing, and processing of structures and materials on a nanoscale level. It has tremendous application in different industries such as construction.

View Article and Find Full Text PDF

One of the most favorable environmental applications of nanotechnology has been in air pollution remediation in which different nanomaterials are used as nanoadsorbents, nanocatalysts, nanofilters, and nanosensors. The nanomaterials have the ability to adsorb several contaminants existing in the air. Also, certain semiconducting nanomaterials materials can be used for photocatalytic remediation.

View Article and Find Full Text PDF

Methane gas is a very effective greenhouse gas and the second-largest contributor to global warming. Biofiltration is an effective technology that uses microorganisms to degrade the pollutant by oxidizing it. In this work, the performance of a biofilter with supporting filter media, consisting of composted sawdust, is evaluated at three different sampling ports.

View Article and Find Full Text PDF

The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not.

View Article and Find Full Text PDF

Nanotechnology implies the scientific research, development, and manufacture, along with processing, of materials and structures on a nano scale. Presently, the contamination of metalloids and metals in the soil has gained substantial attention. The consolidation of nanomaterials and plants in ecological management has received considerable research attention because certain nanomaterials could enhance plant seed germination and entire plant growth.

View Article and Find Full Text PDF

At present, nanotechnology is a priority in research in several nations due to its massive capability and financial impact. However, due to the uncertainties and abnormalities in shape, size, and chemical compositions, the existence of certain nanomaterials may lead to dangerous effects on the human health and environment. The present review includes the different advanced applications of nanomaterials in textiles industries, as well as their associated environmental and health risks.

View Article and Find Full Text PDF

Nanotechnology is an uppermost priority area of research in several nations presently because of its enormous capability and financial impact. One of the most promising environmental utilizations of nanotechnology has been in water treatment and remediation where various nanomaterials can purify water by means of several mechanisms inclusive of the adsorption of dyes, heavy metals, and other pollutants, inactivation and removal of pathogens, and conversion of harmful materials into less harmful compounds. To achieve this, nanomaterials have been generated in several shapes, integrated to form different composites and functionalized with active components.

View Article and Find Full Text PDF

In this study, effects of two different types of porous alumina nanoparticles have been incorporated into high-density polyethylene (HDPE) to study their impact on the properties of the HDPE composite. The dispersion of fillers in the HDPE matrix was evaluated by scanning electron microscopy (SEM). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) integrated with Fourier transform infrared spectroscopy (FTIR) were applied to investigate the calorimetric behavior and thermal stability and to analyze the polymer decomposition, respectively.

View Article and Find Full Text PDF

This study validates, for the first time, the effectiveness of two nanoclays, that is, cloisite (CS)-15A and montmorillonite (MNT) at the polyamide (PA) active layer in the reverse osmosis (RO) membrane. Cloisite-15A is natural montmorillonite modified with dimethyl dihydrogenated tallow quaternary ammonium salt. Thin-film composite (TFC) membranes were fabricated by the interfacial polymerization (IP) process between the trimesoylchloride (TMC)-n-hexane solution and m-phenylenediamine (MPD)-aqueous solution; the IP process took place on a polysulfone support sheet.

View Article and Find Full Text PDF

The demand for clean renewable energy is increasing due to depleting fossil fuels and environmental concerns. Photocatalytic hydrogen production through water splitting is one such promising route to meet global energy demands with carbon free technology. Alternative photocatalysts avoiding noble metals are highly demanded.

View Article and Find Full Text PDF