Publications by authors named "Syed H Shirazi"

Visual analysis of peripheral blood smear slides using medical image analysis is required to diagnose red blood cell (RBC) morphological deformities caused by anemia. The absence of a complete anaemic RBC dataset has hindered the training and testing of deep convolutional neural networks (CNNs) for computer-aided analysis of RBC morphology. We introduce a benchmark RBC image dataset named Anemic RBC (AneRBC) to overcome this problem.

View Article and Find Full Text PDF

Background: Blood diseases such as leukemia, anemia, lymphoma, and thalassemia are hematological disorders that relate to abnormalities in the morphology and concentration of blood elements, specifically white blood cells (WBC) and red blood cells (RBC). Accurate and efficient diagnosis of these conditions significantly depends on the expertise of hematologists and pathologists. To assist the pathologist in the diagnostic process, there has been growing interest in utilizing computer-aided diagnostic (CAD) techniques, particularly those using medical image processing and machine learning algorithms.

View Article and Find Full Text PDF

Precise segmentation of the nucleus is vital for computer-aided diagnosis (CAD) in cervical cytology. Automated delineation of the cervical nucleus has notorious challenges due to clumped cells, color variation, noise, and fuzzy boundaries. Due to its standout performance in medical image analysis, deep learning has gained attention from other techniques.

View Article and Find Full Text PDF

The world has been going through the global crisis of the coronavirus (COVID-19). It is a challenging situation for every country to tackle its healthcare system. COVID-19 spreads through physical contact with COVID-positive patients and causes potential damage to the country's health and economy system.

View Article and Find Full Text PDF

The healthcare sector is the highest priority sector, and people demand the highest services and care. The fast rise of deep learning, particularly in clinical decision support tools, has provided exciting solutions primarily in medical imaging. In the past, ANNs (artificial neural networks) have been used extensively in dermatology and have shown promising results for detecting various skin diseases.

View Article and Find Full Text PDF

Cloud computing coupled with Internet of Things technology provides a wide range of cloud services such as memory, storage, computational processing, network bandwidth, and database application to the end users on demand over the Internet. More specifically, cloud computing provides efficient services such as "". However, Utility providers in Smart Grid are facing challenges in the design and implementation of such architecture in order to minimize the cost of underlying hardware, software, and network services.

View Article and Find Full Text PDF

Objective: Meibomian gland dysfunction (MGD) is a primary cause of dry eye disease. Analysis of MGD, its severity, shapes and variation in the acini of the meibomian glands (MGs) is receiving much attention in ophthalmology clinics. Existing methods for diagnosing, detection and analysing meibomianitis are not capable to quantify the irregularities to IR (infrared) images of MG area such as light reflection, interglands and intraglands boundaries, the improper focus of the light and positioning, and eyelid eversion.

View Article and Find Full Text PDF

Previous works on segmentation of SEM (scanning electron microscope) blood cell image ignore the semantic segmentation approach of whole-slide blood cell segmentation. In the proposed work, we address the problem of whole-slide blood cell segmentation using the semantic segmentation approach. We design a novel convolutional encoder-decoder framework along with VGG-16 as the pixel-level feature extraction model.

View Article and Find Full Text PDF

Background: Blood cell count, also known as differential count of various types of blood cells, provides valuable information in order to assess variety of diseases like AIDS, leukemia and blood cancer. Manual techniques are still used in diseases diagnosis that is very lingering and tedious process. However, machine based automatic analysis of leukocyte is a powerful tool that could reduce the human errors, improve the accuracy, and minimize the required time for blood cell analysis.

View Article and Find Full Text PDF

Manual offline analysis, of a scanning electron microscopy (SEM) image, is a time consuming process and requires continuous human intervention and efforts. This paper presents an image processing based method for automated offline analyses of SEM images. To this end, our strategy relies on a two-stage process, viz.

View Article and Find Full Text PDF