Publications by authors named "Syed H A Faruqui"

Many tasks performed in image-guided procedures can be cast as pose estimation problems, where specific projections are chosen to reach a target in 3D space. In this study, we construct a framework for fluoroscopic pose estimation and compare alternative loss functions and volumetric scene representations. We first develop a differentiable projection (DiffProj) algorithm for the efficient computation of Digitally Reconstructed Radiographs (DRRs) from either Cone-Beam Computerized Tomography (CBCT) or neural scene representations.

View Article and Find Full Text PDF

Background And Goals: One of the biggest difficulties facing healthcare systems today is the prevalence of multiple chronic diseases (MCC). Mortality and the development of new chronic illnesses are more likely in those with MCC. Pre-existing diseases and risk factors specific to the patient have an impact on the complex stochastic process that guides the evolution of MCC.

View Article and Find Full Text PDF

Catheter Digital Subtraction Angiography (DSA) is markedly degraded by all voluntary, respiratory, or cardiac motion artifact that occurs during the exam acquisition. Prior efforts directed toward improving DSA images with machine learning have focused on extracting vessels from individual, isolated 2D angiographic frames. In this work, we introduce improved 2D + t deep learning models that leverage the rich temporal information in angiographic timeseries.

View Article and Find Full Text PDF

More than a quarter of all Americans are estimated to have multiple chronic conditions (MCC). It is known that shared modifiable lifestyle behaviors account for many common MCC. What is not precisely known is the dynamic effect of changes in lifestyle behaviors on the trajectories of MCC emergence.

View Article and Find Full Text PDF

Bayesian networks are powerful statistical models to study the probabilistic relationships among sets of random variables with significant applications in disease modeling and prediction. Here, we propose a continuous time Bayesian network with conditional dependencies represented as regularized Poisson regressions to model the impact of exogenous variables on the conditional intensities of the network. We also propose an adaptive group regularization method with an intuitive early stopping feature based on Gaussian mixture model clustering for efficient learning of the structure and parameters of the proposed network.

View Article and Find Full Text PDF

Background: It is important but challenging to understand the interactions of multiple chronic conditions (MCC) and how they develop over time in patients and populations. Clinical data on MCC can now be represented using graphical models to study their interaction and identify the path toward the development of MCC. However, the current graphical models representing MCC are often complex and difficult to analyze.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) is a major public health burden. Self-management of diabetes including maintaining a healthy lifestyle is essential for glycemic control and to prevent diabetes complications. Mobile-based health data can play an important role in the forecasting of blood glucose levels for lifestyle management and control of T2DM.

View Article and Find Full Text PDF

When patients leave the hospital for lower levels of care, they experience a risk of adverse events on a daily basis. The advent of value-based purchasing among other major initiatives has led to an increasing emphasis on reducing the occurrences of these post-discharge adverse events. This has spurred the development of new prediction technologies to identify which patients are at risk for an adverse event as well as actions to mitigate those risks.

View Article and Find Full Text PDF

Over the past few decades, the rise of multiple chronic conditions has become a major concern for clinicians. However, it is still not known precisely how multiple chronic conditions emerge among patients. We propose an unsupervised multi-level temporal Bayesian network to provide a compact representation of the relationship among emergence of multiple chronic conditions and patient level risk factors over time.

View Article and Find Full Text PDF

Objectives: Evolution of multiple chronic conditions (MCC) follows a complex stochastic process, influenced by several factors including the inter-relationship of existing conditions, and patient-level risk factors. Nearly 20% of citizens aged 18 years and older are burdened with two or more (multiple) chronic conditions (MCC). Treatment for people living with MCC currently accounts for an estimated 66% of the Nation's healthcare costs.

View Article and Find Full Text PDF