Obesity is associated with increased incidence and metastasis of triple-negative breast cancer, an aggressive breast cancer subtype. The extracellular matrix (ECM) is a major component of the tumor microenvironment that drives metastasis. To characterize the temporal effects of age and high-fat diet (HFD)-driven weight gain on the ECM, we injected allograft tumor cells at 4-week intervals into mammary fat pads of mice fed a control or HFD, assessing tumor growth and metastasis and evaluating the ECM composition of the mammary fat pads, lungs, and livers.
View Article and Find Full Text PDFYounger age and obesity increase the incidence and metastasis of triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer. The extracellular matrix (ECM) promotes tumor invasion and metastasis. We characterized the effect of age and obesity on the ECM of mammary fat pads, lungs, and liver using a diet-induced obesity (DIO) model.
View Article and Find Full Text PDFThe extracellular matrix (ECM), a major component of the tumor microenvironment, promotes local invasion to drive metastasis. Here, we describe a method to study whole-tissue ECM effects from disease states associated with metastasis on tumor cell phenotypes and identify the individual ECM proteins and signaling pathways that are driving these effects. We show that decellularized ECM from tumor-bearing and obese mammary glands drives TNBC cell invasion.
View Article and Find Full Text PDF