Proc Natl Acad Sci U S A
January 2020
Neuronal activity can be modulated by mechanical stimuli. To study this phenomenon quantitatively, we mechanically stimulated rat cortical neurons by shear stress and local indentation. Neurons show 2 distinct responses, classified as transient and sustained.
View Article and Find Full Text PDFObjective: Demyelination that results from disease or traumatic injury, such as spinal cord injury (SCI), can have a devastating effect on neural function and recovery. Many researchers are examining treatments to minimize demyelination by improving oligodendrocyte availability in vivo. Transplantation of stem and oligodendrocyte progenitor cells is a promising option, however, trials are plagued by undirected differentiation.
View Article and Find Full Text PDFAim: To demonstrate the design, fabrication and testing of conformable conducting biomaterials that encourage cell alignment.
Materials & Methods: Thin conducting composite biomaterials based on multilayer films of poly(3.4-ethylenedioxythiophene) derivatives, chitosan and gelatin were prepared in a layer-by-layer fashion.
Tissue scaffolds allowing the behaviour of the cells that reside on them to be controlled are of particular interest for tissue engineering. Herein we describe biomineralized conducting polymer-based bone tissue scaffolds that facilitate the electrical stimulation of human mesenchymal stem cells, resulting in enhancement of their differentiation towards osteogenic outcomes.
View Article and Find Full Text PDFMacromol Rapid Commun
November 2015
Back Cover: Tissue scaffolds allowing the behavior of the cells that reside within them to be controlled are of particular interest for tissue engineering. Herein, the preparation of conductive nanofiber-based bone tissue scaffolds are described, made from nonwoven mats of electrospun polycaprolactone with an interpenetrating network of polypyrrole and polystyrenesulfonate. These scaffolds enable the electrical stimulation of human mesenchymal stem cells to enhance their differentiation toward osteogenic outcomes.
View Article and Find Full Text PDFTissue scaffolds allowing the behavior of the cells that reside within them to be controlled are of particular interest for tissue engineering. Herein, the preparation of conductive fiber-based bone tissue scaffolds (nonwoven mats of electrospun polycaprolactone with an interpenetrating network of polypyrrole and polystyrenesulfonate) is described that enable the electrical stimulation of human mesenchymal stem cells to enhance their differentiation toward osteogenic outcomes.
View Article and Find Full Text PDFStimuli-responsive materials enabling the behavior of the cells that reside within them to be controlled are vital for the development of instructive tissue scaffolds for tissue engineering. Herein, we describe the preparation of conductive silk foam-based bone tissue scaffolds that enable the electrical stimulation of human mesenchymal stem cells (HMSCs) to enhance their differentiation toward osteogenic outcomes.
View Article and Find Full Text PDFCervical spinal cord injury (cSCI) can cause devastating neurological deficits, including impairment or loss of upper limb and hand function. A majority of the spinal cord injuries in humans occur at the cervical levels. Therefore, developing cervical injury models and developing relevant and sensitive behavioral tests is of great importance.
View Article and Find Full Text PDFRodent spinal cord injury (SCI) models have been developed to examine functional and physiological deficits after spinal cord injury with the hope that these models will elucidate information about human SCI. Models are needed to examine possible treatments and to understand histopathology after SCI; however, they should be considered carefully and chosen based on the goals of the study being performed. Contusion, compression, transection, and other models exist and have the potential to reveal important information about SCI that may be related to human SCI and the outcomes of treatment and timing of intervention.
View Article and Find Full Text PDFUnilateral nigrostriatal dopamine depletion in animals induces contralateral sensorimotor deficits that are like symptoms associated with Parkinson's disease (PD). Unilateral nigrostriatal dopamine depletion also causes a contralateral deficit in disengagement behavior (e.g.
View Article and Find Full Text PDF