Publications by authors named "Sybille Ebert"

During the development process of therapeutic monoclonal antibodies (mAbs), it is crucial to control (critical) quality attributes such as N-glycosylation influencing pharmacokinetics (PK) and Fc effector functions. Previous reports have shown that mAbs containing high-mannose N-glycans are cleared faster from blood circulation, leading to reduced half-lives. The high-mannose N-glycan content of mAbs can be influenced during the cell culture process by factors such as cell lines, process conditions, and media.

View Article and Find Full Text PDF

N-glycosylation of the Fc part is a (critical) quality attribute of therapeutic antibodies and Fc-containing biotherapeutics, that impacts their stability, immunogenicity, pharmacokinetics, and effector functions. Current glycosylation analysis methods focus on the absolute amounts of glycans, neglecting the apparent glycan distribution over the entirety of proteins. The combination of the two Fc N-glycans, herein referred to as glyco-pair, therefore remains unknown, which is a major drawback for N-glycan impact assessment.

View Article and Find Full Text PDF

The current trend in biopharmaceutical drug manufacturing is towards increasing potency and complexity of products such as peptide scaffolds, oligonucleotides and many more. Therefore, a universal affinity purification step is important in order to meet the requirements for cost and time efficient drug production. By using a self-splicing intein affinity tag, a purification template is generated that allows for a universal chromatographic affinity capture step to generate a tagless target protein without the use of proteases for further tag removal.

View Article and Find Full Text PDF

Protein aggregation of monoclonal antibodies (mAbs) is a common phenomenon associated with the production of these biopharmaceuticals. These aggregates can lead to adverse side effects in patients upon administration, thus expensive downstream processing steps to remove the higher molecular weight species are inevitable. A preferable approach is to reduce the level of aggregation during bioprocessing by a careful adjustment of critical process parameters.

View Article and Find Full Text PDF

Background: Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations.

View Article and Find Full Text PDF