Publications by authors named "Sybilla Matuszczak"

Immunotherapy is one of the most promising anti-cancer treatment. It involves activating the host's own immune system to eliminate cancer cells. Activation of cGAS-STING pathway is promising therapeutic approach for cancer immunotherapy.

View Article and Find Full Text PDF

Background: Adipose-derived stromal cells (ADSCs) demonstrate ability to promote tissue healing and down-regulate excessive inflammation. ADSCs have been used to treat critical limb ischemia in preclinical and clinical trials, but still, there is little known about their optimal delivery strategy. To date, no direct analysis of different methods of ADSCs delivery has been performed in the hindlimb ischemia model.

View Article and Find Full Text PDF

Introduction: Targeting tumor vasculature is an efficient weapon to fight against cancer; however, activation of alternative pathways to rebuild the disrupted vasculature leads to rapid tumor regrowth. Immunotherapy that exploits host immune cells to elicit and sustain potent antitumor response has emerged as one of the most promising tools for cancer treatment, yet many treatments fail due to developed resistance mechanisms. Therefore, our aim was to examine whether combination of immunotherapy and anti-vascular treatment will succeed in poorly immunogenic, difficult-to-treat melanoma and triple-negative breast tumor models.

View Article and Find Full Text PDF

Radiotherapy (RT) is one of the main treatments for head and neck squamous cell carcinomas (HNSCCs). Unfortunately, radioresistance is observed in many cases of HNSCCs. The effectiveness of RT depends on both the direct effect inducing cell death and the indirect effect of changing the tumor microenvironment (TME).

View Article and Find Full Text PDF

Background/aim: Numerous studies have demonstrated an anti-cancer action of plant-derived polyphenols. Their action is mainly related to antioxidant, anti-inflammatory, immunomodulatory and inhibitory properties. It is expected that proper composition of nutrition factors with anti-cancer activity may prevent from cancer incidence or inhibit cancer progression.

View Article and Find Full Text PDF

Due to immunosuppressive properties and confirmed tropism towards cancer cells mesenchymal stromal cells (MSC) have been used in many trials. In our study we used these cells as carriers of IL-12 in the treatment of mice with primary and metastatic B16-F10 melanomas. IL-12 has confirmed anti-cancer activity, induces a strong immune response against cancer cells and acts as an anti-angiogenic agent.

View Article and Find Full Text PDF

Vascular disrupting agents (VDAs), such as DMXAA, effectively destroy tumor blood vessels and cause the formation of large areas of necrosis in the central parts of the tumors. However, the use of VDAs is associated with hypoxia activation and residues of rim cells on the edge of the tumor that are responsible for tumor regrowth. The aim of the study was to combine DMXAA with radiotherapy (brachytherapy) and find the appropriate administration sequence to obtain the maximum synergistic therapeutic effect.

View Article and Find Full Text PDF

Neovascularization, the process of new blood vessels formation in response to hypoxia induced signals, is an essential step during wound healing or ischemia repair. It follows as a cascade of consecutive events leading to new blood vessels formation and their subsequent remodeling to a mature and functional state, enabling tissue regeneration. Any disruption in consecutive stages of neovascularization can lead to chronic wounds or impairment of tissue repair.

View Article and Find Full Text PDF

Radiotherapy (RT) is one of the major methods of cancer treatment. RT destroys cancer cells, but also affects the tumor microenvironment (TME). The delicate balance between immunomodulation processes in TME is dependent, among other things, on a specific radiation dose.

View Article and Find Full Text PDF

Background: Adipose tissue-derived mesenchymal stromal cells (ASCs) have been shown to exhibit some promising properties of their use in regenerative medicine as advanced therapy medicinal products (ATMP). However, different sources of their origin, methods of isolation, and expansion procedures cause the laboratory and clinical results difficult to compare.

Methods: ASCs were isolated from lipoaspirates and cultured in three different medium formulations: αMEM and DMEM as a basal medium supplemented with 10% of human platelet lysate (hPL) and DMEM supplemented with 20% fetal bovine serum (FBS) and bFGF as a gold standard medium.

View Article and Find Full Text PDF

Aims: Mesenchymal stromal cells isolated from different tissues are claimed to demonstrate similar therapeutic potential and are often incorrectly named mesenchymal stem cells. However, through comparison of such cells is lacking. This study aimed to compare the transcriptome of mesenchymal cells of the same phenotype isolated from the heart muscle and epicardial fat of the same patient, before and after culture.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) play a significant role in at least two key processes underlying neoplastic progression: angiogenesis and immune surveillance. TAMs phenotypic changes play important role in tumor vessel abnormalization/ normalization. M2-like TAMs stimulate immunosuppression and formation of defective tumor blood vessels leading to tumor progression.

View Article and Find Full Text PDF

Aims: The aim of the present study was to isolate mesenchymal stromal cells (MSC) with CD105+CD34- phenotype from human hearts, and to investigate their therapeutic potential in a mouse model of hindlimb ischemia and myocardial infarction (MI). The study aimed also to investigate the feasibility of xenogeneic MSCs implantation.

Methods And Results: MSC isolated from human hearts were multipotent cells.

View Article and Find Full Text PDF

Tumor progression depends on tumor milieu, which influences neovasculature formation and immunosuppression. Combining immunotherapy with antiangiogenic/antivascular therapy might be an effective therapeutic approach. The aim of our study was to elaborate an anticancer therapeutic strategy based on the induction of immune response which leads to polarization of tumor milieu.

View Article and Find Full Text PDF

According to literature data, self-renewing, multipotent, and clonogenic cardiac c-Kit(+) progenitor cells occur within human myocardium. The aim of this study was to isolate and characterize c-Kit(+) progenitor cells from explanted human hearts. Experimental material was obtained from 19 adult and 7 pediatric patients.

View Article and Find Full Text PDF

Myocardial infarction is underoxygenation-driven limited necrosis of heart tissues which results in elimination of ca. 0.5 to 1 billion spontaneously contracting cardiomyocytes (CM).

View Article and Find Full Text PDF

D-K6L9 peptide is bound by phosphatidylserine and induces necrosis in cancer cells. In our therapeutic experience, this peptide, when administered directly into B16-F10 murine melanoma tumors, inhibited their growth. Cessation of therapy results, however, in tumor relapse.

View Article and Find Full Text PDF

One of the preconditions of effective anticancer therapy is efficient transfer of the therapeutic agent (chemotherapeutic) to tumor cells. Fundamental barriers making drug delivery and action difficult include underoxygenation, elevated interstitial pressure, poor and abnormal tumor blood vascular network and acidic tumor milieu. In this study we aimed at developing an optimized scheme of administering a combination of an angiogenesis-inhibiting drug (vasostatin) and a chemotherapeutic (cyclophosphamide) in the therapeutic treatment of mice bearing experimental B16-F10 melanoma tumors.

View Article and Find Full Text PDF

Certain anticancer drugs, such as the peptide CAMEL (aa sequence KWKLFKKIGAULKVL) induce necrotic type of cell death. During this process, a protein termed high mobility group box 1 (HMGB1) is released from cell nucleus into cytoplasm and then into extracellular milieu. Outside of cells, it becomes a proinflammatory cytokine.

View Article and Find Full Text PDF