Publications by authors named "Syanah C Wynn"

The information transfer necessary for successful memory retrieval is believed to be mediated by theta and gamma oscillations. These oscillations have been linked to memory processes in electrophysiological studies, which were correlational in nature. In the current study, we used transcranial alternating current stimulation (tACS) to externally modulate brain oscillations to examine its direct effects on memory performance.

View Article and Find Full Text PDF

The timing of semantic processing during object recognition in the brain is a topic of ongoing discussion. One way of addressing this question is by applying multivariate pattern analysis to human electrophysiological responses to object images of different semantic categories. However, although multivariate pattern analysis can reveal whether neuronal activity patterns are distinct for different stimulus categories, concerns remain on whether low-level visual features also contribute to the classification results.

View Article and Find Full Text PDF

Theta and gamma oscillations have been linked to episodic memory processes in various studies. Both oscillations seem to be vital for processes guided by the medial temporal lobe, such as the retrieval of information from memory. While theta oscillations increase with successful memory, it is unclear what the unique contribution of theta is to various subcomponents of memory.

View Article and Find Full Text PDF

Theta and gamma oscillations have been linked to episodic memory processes in various studies. Both oscillations seem to be vital for processes guided by the medial temporal lobe, such as the retrieval of information from memory. While theta oscillations increase with successful memory, it is unclear what the unique contribution of theta is to various subcomponents of memory.

View Article and Find Full Text PDF

Active navigation seems to yield better spatial knowledge than passive navigation, but it is unclear how active decision-making influences learning and memory. Here, we examined the contributions of theta oscillations to memory-related exploration while testing theories about how they contribute to active learning. Using electroencephalography (EEG), we tested individuals on a maze-learning task in which they made discrete decisions about where to explore at each choice point in the maze.

View Article and Find Full Text PDF

Behavioral studies have shown that humans account for inertial acceleration in their decisions of hand choice when reaching during body motion. Physiologically, it is unclear at what stage of movement preparation information about body motion is integrated with the process of hand selection. Here, we addressed this question by applying transcranial magnetic stimulation over left motor cortex (M1) of human participants who performed a preferential reach task while they were sinusoidally translated on a linear motion platform.

View Article and Find Full Text PDF

The primary aim of this review is to examine the brain activity patterns that are related to subjectively perceived memory confidence. We focus on the main brain regions involved in episodic memory: the medial temporal lobe (MTL), prefrontal cortex (PFC), and posterior parietal cortex (PPC), and relate activity in their subregions to memory confidence. How this brain activity in both the encoding and retrieval phase is related to (subsequent) memory confidence ratings will be discussed.

View Article and Find Full Text PDF

To successfully encode information into long-term memory, we need top-down control to focus our attention on target stimuli. This attentional focus is achieved by the modulation of sensory neuronal excitability through alpha power. Failure to modulate alpha power and to inhibit distracting information has been reported in older adults during attention and working memory tasks.

View Article and Find Full Text PDF

Electrophysiological studies on recognition memory have identified several brain signals that are associated with subjective perceived confidence. However, the extent these brain signals reflect a generic process and are independent of the type of information recognized remains an open question. To address this issue, twenty-seven healthy volunteers performed an episodic memory task while their electro-encephalogram (EEG) was recorded.

View Article and Find Full Text PDF

Previous research suggests involvement of parietal theta (3-7 Hz) power in subjectively perceived memory confidence during retrieval. To obtain further insights into the role of parietal theta activity during retrieval in processes associated with performance and confidence, fifty-four healthy volunteers performed a recognition memory task in a within-subject sham controlled transcranial alternating current stimulation (tACS) study. Participants encoded a subset of words at specific on-screen locations.

View Article and Find Full Text PDF

Involvement of the cerebellum to non-motor related aspects of behavior is becoming increasingly clear. The aim of this study was to investigate the role of the cerebellum in reactive and proactive behavioral control and interference. In a double-blind controlled within-subject design, 26 healthy volunteers underwent real and sham cerebellar transcranial direct current stimulation (tDCS) while performing a go/no-go task and a delay discounting task.

View Article and Find Full Text PDF

Subjectively perceived confidence is critically involved in distinguishing recollection from familiarity in episodic memory retrieval. However, the extent to which recollection and familiarity share similar electrophysiological processes associated with subjectively perceived memory confidence remains an open question. In addition, the role of memory encoding in subjectively perceived confidence during retrieval has not yet been investigated.

View Article and Find Full Text PDF

Functional neuroimaging studies suggest a role for the left angular gyrus (AG) in processes related to memory recognition. However, results of neuropsychological and transcranial magnetic stimulation (TMS) studies have been inconclusive regarding the specific contribution of the AG in recollection, familiarity, and the subjective experience of memory. To obtain further insight into this issue, 20 healthy right-handed volunteers performed a memory task in a single-blind within-subject controlled TMS study.

View Article and Find Full Text PDF

A common finding across many reaction time tasks is that people slow down on trials following errors, a phenomenon known as post-error slowing. In the present study, we tested a novel hypothesis about the neural mechanism underlying post-error slowing. Recent research has shown that when task-relevant stimuli occur in a rhythmic stream, neuronal oscillations entrain to the task structure, thereby enhancing reaction speed.

View Article and Find Full Text PDF