This study describes the development of a low-cost fluorescence assay for detecting homocysteine (Hcy) without the interference of cysteine and glutathione using carbon quantum dots. Herein nitrogen-doped carbon quantum dots (NCDs) were synthesized from citric acid as the carbon source and urea as the dopant using a one-pot microwave-assisted method. The obtained NCDs were incorporated with folic acid (FA) by the direct ex situ addition method and were used as a fluorescence probe to detect Hcy.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2018
Hurdles to develop point of care diagnostic methods restrict the translation of progress in the health care sector from bench side to bedside. In this article a simple, cost effective fluorescent as well as colorimetric nanosensor was developed for the early and easy detection of hyperbilirubinemia. A stable, water soluble bovine serum albumin stabilised copper nanocluster (BSA CuNC) was used as the fluorescent probe which exhibited strong blue emission (404nm) upon 330nm excitation.
View Article and Find Full Text PDFThe authors report Ho ion incorporated and fluorescent dye-doped silica nanoparticles which are engineered to enable the imaging modalities of receptor targeted fluorescence imaging (FI) and magnetic resonance imaging (MRI). The silica nanoparticles synthesized through a modified Stöber method is luminomagnetic by virtue of the luminescence of organic dye fluorophore (FITC) and magnetism of Ho. The doping concentration of Ho is estimated by inductively coupled plasma mass spectrometry (ICP-MS) as 0.
View Article and Find Full Text PDF