Positive phase coupling plays an attractive role in inducing in-phase synchrony in an ensemble of phase oscillators. Positive coupling involving both amplitude and phase continues to be attractive, leading to complete synchrony in identical oscillators (limit cycle or chaotic) or phase coherence in oscillators with heterogeneity of parameters. In contrast, purely positive phase velocity coupling may originate a repulsive effect on pendulumlike oscillators (with rotational motion) to bring them into a state of diametrically opposite phases or a splay state.
View Article and Find Full Text PDFWe present an exemplary system of three identical oscillators in a ring interacting repulsively to show up chimera patterns. The dynamics of individual oscillators is governed by the superconducting Josephson junction. Surprisingly, the repulsive interactions can only establish a symmetry of complete synchrony in the ring, which is broken with increasing repulsive interactions when the junctions pass through serials of asynchronous states (periodic and chaotic) but finally emerge into chimera states.
View Article and Find Full Text PDFThe superconducting Josephson junction shows spiking and bursting behaviors, which have similarities with neuronal spiking and bursting. This phenomenon had been observed long ago by some researchers; however, they overlooked the biological similarity of this particular dynamical feature and never attempted to interpret it from the perspective of neuronal dynamics. In recent times, the origin of such a strange property of the superconducting junction has been explained and such neuronal functional behavior has also been observed in superconducting nanowires.
View Article and Find Full Text PDFMathematical modeling may be an excellent tool to analyze and explain complex biological phenomena. In this paper, we use a mathematical model to reveal various interesting dynamical features of phytoplankton-zooplankton interaction and attempt to explain the reason for contrasting dynamics shown by different laboratory and field experiments. Our study shows that the phytoplankton-zooplankton interaction in a pelagic system is very complex and the plankton dynamics, including the bloom phenomenon, strongly depends on the selective predation of zooplankton and the nutritional value of phytoplankton.
View Article and Find Full Text PDFWe study excitation and suppression of chimera states in an ensemble of nonlocally coupled oscillators arranged in a framework of multiplex network. We consider the homogeneous network (all identical oscillators) with different parametric cases and interlayer heterogeneity by introducing parameter mismatch between the layers. We show the feasibility to suppress chimera states in the multiplex network via moderate interlayer interaction between a layer exhibiting chimera state and other layers which are in a coherent or incoherent state.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2013
We report the pattern dynamics in the vicinity of an inverse homoclinic bifurcation in an extended dissipative system. We observe, in direct numerical simulations of three dimensional Rayleigh-Bénard convection with stress-free top and bottom plates, a spontaneous breaking of a competition of two mutually perpendicular sets of oscillating cross rolls to one of two possible sets of oscillating cross rolls as the Rayleigh number is raised above a critical value. The time period of the oscillating cross-roll patterns diverges and shows scaling behavior near the bifurcation point.
View Article and Find Full Text PDFWe study the dynamics of nonlinear oscillators indirectly coupled through a dynamical environment or a common medium. We observed that this form of indirect coupling leads to synchronization and phase-flip transition in periodic as well as chaotic regime of oscillators. The phase-flip transition from in- to anti-phase synchronization or vise-versa is analyzed in the parameter plane with examples of Landau-Stuart and Rössler oscillators.
View Article and Find Full Text PDFAn electronic analog of a synthetic genetic network known as the repressilator is proposed. The repressilator is a synthetic biological clock consisting of a cyclic inhibitory network of three negative regulatory genes which produces oscillations in the expressed protein concentrations. Compared to previous circuit analogs of the repressilator, the circuit here takes into account more accurately the kinetics of gene expression, inhibition, and protein degradation.
View Article and Find Full Text PDFWe report experimental observations of Shil'nikov-type homoclinic chaos and mixed-mode oscillations in asymmetry-induced Chua's oscillator. The asymmetry plays a crucial role in the related homoclinic bifurcation. The asymmetry is introduced in the Chua circuit by forcing a dc voltage.
View Article and Find Full Text PDFModeling approaches are presented for detecting an anomalous route to phase synchronization from time series of two interacting nonlinear oscillators. The anomalous transition is characterized by an enlargement of the mean frequency difference between the oscillators with an initial increase in the coupling strength. Although such a structure is common in a large class of coupled nonisochronous oscillators, prediction of the anomalous transition is nontrivial for experimental systems, whose dynamical properties are unknown.
View Article and Find Full Text PDFRecently, the phase-flip bifurcation has been described as a fundamental transition in time-delay coupled, phase-synchronized nonlinear dynamical systems. The bifurcation is characterized by a change of the synchronized dynamics from being in-phase to antiphase, or vice versa; the phase-difference between the oscillators undergoes a jump of pi as a function of the coupling strength or the time delay. This phase-flip is accompanied by discontinuous changes in the frequency of the synchronized oscillators, and in the largest negative Lyapunov exponent or its derivative.
View Article and Find Full Text PDFThere is an acute dearth of therapeutic interventions against visceral leishmaniasis that is required to restore an established defective cell-mediated immune response. Hence, formulation of effective immunotherapy requires the use of dominant antigen(s) targeted to elicit a specific antiparasitic cellular immune response. We implemented hybrid cell vaccination therapy in Leishmania donovani-infected BALB/c mice by electrofusing dominant Leishmania antigen kinetoplastid membrane protein 11 (KMP-11)-transfected bone marrow-derived macrophages from BALB/c mice with allogeneic bone marrow-derived dendritic cells from C57BL/6 mice.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2006
We present a general bifurcation in the synchronized dynamics of time-delay-coupled nonlinear oscillators. The relative phase between the oscillators jumps from zero to pi as a function of the coupling; this phase-flip bifurcation is accompanied by a discontinuous change in the frequency of the synchronized oscillators. This phenomenon is of broad relevance, being observed in regimes of oscillator death as well as in periodic, quasiperiodic, and chaotic dynamics.
View Article and Find Full Text PDFWe study the transition to phase synchronization in two diffusively coupled, nonidentical Chua oscillators. In the experiments, depending on the used parameterization, we observe several distinct routes to phase synchronization, including states of either in-phase, out-of-phase, or antiphase synchronization, which may be intersected by an intermediate desynchronization regime with large fluctuations of the frequency difference. Furthermore, we report the first experimental evidence of an anomalous transition to phase synchronization, which is characterized by an initial enlargement of the natural frequency difference with coupling strength.
View Article and Find Full Text PDF