Fluoromethyl, difluoromethyl, and trifluoromethyl groups are present in numerous pharmaceuticals and agrochemicals, where they play critical roles in the efficacy and metabolic stability of these molecules. Strategies for late-stage incorporation of fluorine-containing atoms in molecules have become an important area of organic and medicinal chemistry as well as synthetic biology. Herein, we describe the synthesis and use of -adenosyl--(fluoromethyl)homotellurocysteine (FMeTeSAM), a novel and biologically relevant fluoromethylating agent.
View Article and Find Full Text PDFThe specific activity of enzymes can be altered over long timescales in cells by synonymous mutations that alter a messenger RNA molecule's sequence but not the encoded protein's primary structure. How this happens at the molecular level is unknown. Here, we use multiscale modelling of three Escherichia coli enzymes (type III chloramphenicol acetyltransferase, D-alanine-D-alanine ligase B and dihydrofolate reductase) to understand experimentally measured changes in specific activity due to synonymous mutations.
View Article and Find Full Text PDFLipoyl synthase (LS) catalyzes the last step in the biosynthesis of the lipoyl cofactor, which is the attachment of sulfur atoms at C6 and C8 of an -octanoyllysyl side chain of a lipoyl carrier protein (LCP). The protein is a member of the radical -adenosylmethionine (SAM) superfamily of enzymes, which use SAM as a precursor to a 5'-deoxyadenosyl 5'-radical (5'-dA·). The role of the 5'-dA· in the LS reaction is to abstract hydrogen atoms from C6 and C8 of the octanoyl moiety of the substrate to initiate subsequent sulfur attachment.
View Article and Find Full Text PDFLipoic acid is an eight-carbon sulfur-containing biomolecule that functions primarily as a cofactor in several multienzyme complexes. It is biosynthesized as an attachment to a specific lysyl residue on one of the subunits of these multienzyme complexes. In and many other organisms, this biosynthetic pathway involves two dedicated proteins: octanoyltransferase (LipB) and lipoyl synthase (LipA).
View Article and Find Full Text PDFType 1 and type 2 isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-1 and IDI-2) catalyze the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the fundamental building blocks for biosynthesis of isoprenoid compounds. Previous studies indicate that both isoforms of IDI catalyze isomerization by a protonation-deprotonation mechanism. IDI-1 and IDI-2 are "sluggish" enzymes with turnover times of ∼10 s and ∼1 s, respectively.
View Article and Find Full Text PDFType 2 isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) in the isoprenoid biosynthetic pathway. The enzyme from Streptomyces pneumoniae (spIDI-2) is a homotetramer in solution with behavior, including a substantial increase in the rate of FMN reduction by NADPH in the presence of IPP, suggesting that substrate binding at one subunit alters the kinetic and binding properties of another. We now report the construction of catalytically active monomeric spIDI-2.
View Article and Find Full Text PDFFlavin mononucleotide (FMN) is a coenzyme for numerous proteins involved in key cellular and physiological processes. Isotopically labeled flavin is a powerful tool for studying the structure and mechanism of flavoenzyme-catalyzed reactions by a variety of techniques, including NMR, IR, Raman, and mass spectrometry. In this report, we describe the preparation of labeled FMN isotopologues enriched with (15)N and (13)C isotopes at various sites in the pyrazine and pyrimidine rings of the isoalloxazine core of the cofactor from readily available precursors by a five-step chemo-enzymatic synthesis.
View Article and Find Full Text PDFIsopentenyl diphosphate isomerase (IDI) is a key enzyme in the isoprenoid biosynthetic pathway and is required for all organisms that synthesize isoprenoid metabolites from mevalonate. Type 1 IDI (IDI-1) is a metalloprotein that is found in eukaryotes, whereas the type 2 isoform (IDI-2) is a flavoenzyme found in bacteria that is completely absent from human. IDI-2 from the pathogenic bacterium Streptococcus pneumoniae was recombinantly expressed in Escherichia coli.
View Article and Find Full Text PDF