The induction of immunological responses that trigger bio-physiological symptoms in the respiratory tract following repeated exposure to a substance, is known as respiratory sensitization. The inducing compound is known as a respiratory sensitizer. While respiratory sensitization by high molecular weight (HMW) materials is recognized and extensively studied, much less information is available regarding low molecular weight (LMW) materials as respiratory sensitizers.
View Article and Find Full Text PDFOccupational asthma can be induced by a number of chemicals at the workplace. Risk assessment of potential sensitizers is mostly performed in animal experiments. With increasing public demand for alternative methods, human precision-cut lung slices (PCLS) have been developed as an ex vivo model.
View Article and Find Full Text PDFPrecision-cut lung slices (PCLSs) are an organotypic lung model that is widely used in pharmacological, physiological, and toxicological studies. Genotoxicity testing, as a pivotal part of early risk assessment, is currently established in vivo in various organs including lung, brain, or liver, and in vitro in cell lines or primary cells. The aim of the present study was to provide the three-dimensional organ culture PCLS as a new ex vivo model for determination of genotoxicity using the Comet assay.
View Article and Find Full Text PDFIncreasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS)-induced inflammation model was established in marmoset monkeys (Callithrix jacchus) to reflect crucial features of inflammatory lung diseases.
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2011
Bronchoconstriction is a characteristic symptom of various chronic obstructive respiratory diseases such as chronic obstructive pulmonary disease and asthma. Precision-cut lung slices (PCLS) are a suitable ex vivo model to study physiological mechanisms of bronchoconstriction in different species. In the present study, we established an ex vivo model of bronchoconstriction in nonhuman primates (NHPs).
View Article and Find Full Text PDFToxicol Appl Pharmacol
August 2010
Prediction of lung innate immune responses is critical for developing new drugs. Well-established immune modulators like lipopolysaccharides (LPS) can elicit a wide range of immunological effects. They are involved in acute lung diseases such as infections or chronic airway diseases such as COPD.
View Article and Find Full Text PDFThe aim of this study was to establish an air-liquid interface (ALI) culture of precision-cut lung slices (PCLS) for direct exposure of lung cells to gaseous contaminants. Nitrogen dioxide (NO(2)) and ozone (O(3)) were selected as model gas compounds. Acute pro-inflammatory and toxic effects of NO(2) and O(3) on live lung tissue were investigated.
View Article and Find Full Text PDFThe aim of this study was to investigate the potential cytotoxicity of solid lipid nanoparticles (SLN) for human lung as a suitable drug delivery system (DDS). Therefore we used a human alveolar epithelial cell line (A549) and murine precision-cut lung slices (PCLS) to estimate the tolerable doses of these particles for lung cells. A549 cells (in vitro) and precision-cut lung slices (ex vivo) were incubated with SLN20 (20% phospholipids in the lipid matrix of the particles) and SLN50 (50% phospholipids in the lipid matrix of the particles) in increasing concentrations.
View Article and Find Full Text PDFToxicol Appl Pharmacol
August 2008
The aim of this study was the establishment of precision-cut lung slices (PCLS) as a suitable ex vivo alternative approach to animal experiments for investigation of immunomodulatory effects. For this purpose we characterized the changes of cytokine production and the expression of cell surface markers after incubation of PCLS with immunoactive substances lipopolysaccharide (LPS), macrophage-activating lipopeptide-2 (MALP-2), interferon gamma (IFNgamma), and dexamethasone. Viability of PCLS from wild-type and CD11c-enhanced yellow fluorescent protein (CD11-EYFP)-transgenic mice was controlled by measurement of lactate dehydrogenase (LDH) enzyme activity and live/dead fluorescence staining using confocal microscopy.
View Article and Find Full Text PDFHeparan sulphate proteoglycans are major components of the glomerular basement membrane and play a key role in their molecular organization and function. Moreover, their presence is essential for the maintenance of the selective permeability of the glomerular basement membrane. Recently, we have isolated and characterized a novel, small basement membrane associated heparan sulphate proteoglycan from human aorta and kidney.
View Article and Find Full Text PDF