Solanaceous plants, such as Solanum dulcamara, produce steroidal glycosides (SGs). Leaf SG profiles vary among S. dulcamara individuals, leading to distinct phytochemical phenotypes ('chemotypes') and intraspecific phytochemical diversity ('chemodiversity').
View Article and Find Full Text PDFIn this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.
View Article and Find Full Text PDFBackground: Studies on very long-term outcomes after aortic valve replacement are sparse.
Methods: In this retrospective cohort study, long-term outcomes during 25.1 ± 2.
J Cardiovasc Surg (Torino)
February 2022
Background: The effect of prosthesis-patient mismatch (PPM) on late survival after aortic valve replacement (AVR) in patient with symptomatic severe aortic stenosis (AS) remains unclear. Also, late follow-up in previous studies is confined to only one decade. We aimed to determine the effect of PPM on late survival after isolated AVR for symptomatic severe AS during 25 years of follow-up.
View Article and Find Full Text PDFWe search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection.
View Article and Find Full Text PDFInteract Cardiovasc Thorac Surg
January 2021
Objectives: Longer aortic cross-clamp (ACC) time is associated with decreased early survival after cardiac surgery. Because maximum follow-up in previous studies on this subject is confined to 28 months, it is unknown whether this adverse effect is sustained far beyond this term. We aimed to determine whether longer ACC time was independently associated with decreased late survival after isolated aortic valve replacement in patients with severe aortic stenosis during 25 years of follow-up.
View Article and Find Full Text PDFThe quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector.
View Article and Find Full Text PDFWe present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star-black hole, and binary black hole systems.
View Article and Find Full Text PDFCurrent interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector.
View Article and Find Full Text PDFThe recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime.
View Article and Find Full Text PDFWe analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index.
View Article and Find Full Text PDFWe present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 M_{⊙}-1.0 M_{⊙} using data taken between September 12, 2015 and January 19, 2016.
View Article and Find Full Text PDFWe study the electromagnetic coupling of the Advanced Virgo (AdV) input mirror payload in response to a slowly time-varying magnetic field. As the problem is not amenable to analytical solution, we employ and validate a finite element (FE) analysis approach. The FE model is built to represent as faithfully as possible the real object, and it has been validated by comparison with experimental measurements.
View Article and Find Full Text PDFOn 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii.
View Article and Find Full Text PDFThe detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources.
View Article and Find Full Text PDFWe present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy.
View Article and Find Full Text PDFThe LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations.
View Article and Find Full Text PDFOn August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.
View Article and Find Full Text PDFOn August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.
View Article and Find Full Text PDFObjective: There is a paucity of data on long-term survival of new-onset postoperative atrial fibrillation (POAF) after cardiac surgery. Also, mean follow-up in previous studies is confined to a maximum of one decade. This retrospective, longitudinal cohort study was performed to determine the effect on long-term survival of new-onset POAF after aortic valve replacement (AVR) over a mean follow-up of almost 2 decades.
View Article and Find Full Text PDF